cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377867 Number of subwords of the form DDDD in nondecreasing Dyck paths of length 2n.

This page as a plain text file.
%I A377867 #13 Mar 04 2025 08:36:24
%S A377867 0,0,0,0,1,7,33,131,473,1608,5242,16567,51123,154793,461525,1358646,
%T A377867 3957088,11420995,32707809,93040751,263113505,740238852,2073098086,
%U A377867 5782387855,16070206191,44516728277,122956408493,338707969266,930787894348,2552224341403,6984100641117
%N A377867 Number of subwords of the form DDDD in nondecreasing Dyck paths of length 2n.
%C A377867 A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.
%H A377867 E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170 (1997), 211-217.
%H A377867 Éva Czabarka, Rigoberto Flórez, Leandro Junes and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2018.06.032">Enumerations of peaks and valleys on non-decreasing Dyck paths</a>, Discrete Math., Vol. 341, No. 10 (2018), pp. 2789-2807. See p. 2798.
%H A377867 Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Florez/florez51.html">Counting Subwords in Non-Decreasing Dyck Paths</a>, J. Int. Seq. (2025) Vol. 28, Art. No. 25.1.6. See pp. 15, 19.
%H A377867 Rigoberto Flórez, Leandro Junes, and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2019.06.018">Enumerating several aspects of non-decreasing Dyck paths</a>, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3092.
%H A377867 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (10,-39,74,-69,28,-4).
%F A377867 a(n) = (3*(n-2)*L(2*n-4) - 3*F(2*n+1))/5 + (n+9)*2^(n-4) for n>=3, where F(n) = A000045(n) and L(n) = A000032(n).
%F A377867 G.f.: x^4*(1 - 3*x + 2*x^2 + x^4)/((1 - 2*x)^2*(1 - 3*x + x^2)^2).
%t A377867 Table[If[n < 3, 0, (3*(n-2)*LucasL[2*n-4]-3*Fibonacci[2*n+1])/5+(n+9)*2^(n-4)], {n,0,20}]
%Y A377867 Cf. A000032, A000045, A377679,  A377670, A375995.
%K A377867 nonn,easy
%O A377867 0,6
%A A377867 _Rigoberto Florez_, Nov 10 2024