This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377877 #12 Nov 13 2024 16:56:25 %S A377877 1,2,6,30,210,2310,1905,1135,2815,2245,2605,2630,435,2210,1280,785, %T A377877 980,1570,2020,965,2890,1595,1005,2165,2060,2945,570,2460,720,355, %U A377877 2615,855,2630,935,1840,2285,1285,1745,60,645,2210,1840,1790,1265,395,2815,810,2160,430,735,2690,1770,1155,230,1480,2235,305,795 %N A377877 The n-th primorial number reduced modulo 3125. %H A377877 Antti Karttunen, <a href="/A377877/b377877.txt">Table of n, a(n) for n = 0..15625</a> %H A377877 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A377877 a(n) = A002110(n) mod (5^5). %t A377877 Mod[FoldList[Times, 1, Prime[Range[100]]], 3125] (* _Paolo Xausa_, Nov 13 2024 *) %o A377877 (PARI) %o A377877 A002110(n) = prod(i=1,n,prime(i)); %o A377877 A377877(n) = (A002110(n)%3125); %o A377877 (PARI) %o A377877 up_to = 15625; %o A377877 A377877list(up_to_n) = { my(m=5^5, v=vector(1+up_to_n), pr=1); v[1] = 1; for(n=1, up_to_n, pr *= Mod(prime(n),m); v[1+n] = lift(pr)); (v); }; %o A377877 v377877 = A377877list(up_to); %o A377877 A377877(n) = v377877[1+n]; %Y A377877 Cf. A002110. %Y A377877 Cf. also A086360, A377876. %K A377877 nonn,less %O A377877 0,2 %A A377877 _Antti Karttunen_, Nov 13 2024