This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377897 #20 Nov 14 2024 05:31:41 %S A377897 4,5,8,10,11,14,16,17,20,22,23,25,27,30,31,33,35,38,40,41,44,46,47,49, %T A377897 51,54,56,58,59,62,64,66,67,69,72,73,75,77,80,82,83,85,87,90,92,94,96, %U A377897 97,99,102,103,105,108,109,111,114,116,118,120,122,124,126,127,129,132,134,136,137,140 %N A377897 Numbers k such that k + PrimePi(k) is even. %H A377897 Paolo Xausa, <a href="/A377897/b377897.txt">Table of n, a(n) for n = 1..10000</a> %t A377897 Select[Range[200], EvenQ[# + PrimePi[#]] &] (* _Paolo Xausa_, Nov 13 2024 *) %o A377897 (Python) %o A377897 from sympy import nextprime %o A377897 def A377897_gen(): # generator of terms %o A377897 p,q,a = 3,5,1 %o A377897 while True: %o A377897 yield from range(p+a,q,2) %o A377897 p, q, a = q, nextprime(q), a^1 %o A377897 A377897_list = list(islice(A377897_gen(),69)) # _Chai Wah Wu_, Nov 13 2024 %o A377897 (Python) %o A377897 from sympy import primepi, prevprime %o A377897 def A377897(n): %o A377897 def f(x): %o A377897 if x<=3: return n+x %o A377897 p = prevprime(x+1) %o A377897 i = int(primepi(p)) %o A377897 return n+x-(p>>1)-(x-p-((i^x)&1)>>1) %o A377897 m, k = n, f(n) %o A377897 while m != k: m, k = k, f(k) %o A377897 return m # _Chai Wah Wu_, Nov 13 2024 %Y A377897 Cf. A000720, A121053, A377994 (complement). %K A377897 nonn %O A377897 1,1 %A A377897 _N. J. A. Sloane_, Nov 13 2024