This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377917 #29 Dec 01 2024 19:34:09 %S A377917 10,66,489,3631,26951,200045,1484850,11021410,81807240,607220362, %T A377917 4507138581,33454573430,248319075015,1843166918425,13681044394077, %U A377917 101548575900358,753751904485831,5594779921615960,41527672679871145,308242258385100002,2287951231622970075,16982489246315828049 %N A377917 Number of n-digit terms in A377912. %C A377917 Also number of n-digit terms in A342042. %C A377917 a(1149) has 1001 digits. - _Michael S. Branicky_, Nov 30 2024 %C A377917 The terms of A377912 as decimal digit strings are a regular language so can be counted using the transitions in a state machine matching those strings. - _Kevin Ryde_, Dec 01 2024 %H A377917 Michael S. Branicky, <a href="/A377917/b377917.txt">Table of n, a(n) for n = 1..1148</a> %H A377917 Michael S. Branicky, <a href="/A377917/a377917.py.txt">Python program for A377917</a> %H A377917 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (5,15,20,15,6,1). %F A377917 From _Kevin Ryde_, Dec 01 2024: (Start) %F A377917 a(n) = 5*a(n-1) + 15*a(n-2) + 20*a(n-3) + 15*a(n-4) + 6*a(n-5) + a(n-6) for n>=8. %F A377917 G.f.: -1 + x + (1+x)^4 / (1 - 5*x - 15*x^2 - 20*x^3 - 15*x^4 - 6*x^5 - x^6). (End) %e A377917 The 66 two-digit terms in A377912 are %e A377917 10,11,12,13,14,15,16,17,18,19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37, %e A377917 38,39,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,67,68,69,70,71,72,73,74, %e A377917 75,76,77,78,79,89,90,91,92,93,94,95,96,97,98,99. %e A377917 There is an obvious division into 5 blocks of size 10 and blocks of sizes 7, 5, 3, and 1. %t A377917 LinearRecurrence[{5, 15, 20, 15, 6, 1}, {10, 66, 489, 3631, 26951, 200045, 1484850}, 25] (* _Paolo Xausa_, Dec 01 2024 *) %Y A377917 Cf. A342042, A377912. %Y A377917 First differences of A377918. %K A377917 nonn,base,easy %O A377917 1,1 %A A377917 _Sebastian Karlsson_ and _N. J. A. Sloane_, Nov 30 2024 %E A377917 a(6) and beyond from _Michael S. Branicky_, Nov 30 2024