A377918 a(n) = index in A377912 (or, equally, in A342042) of the first n-digit term.
1, 11, 77, 566, 4197, 31148, 231193, 1716043, 12737453, 94544693, 701765055, 5208903636, 38663477066, 286982552081, 2130149470506, 15811193864583, 117359769764941, 871111674250772, 6465891595866732, 47993564275737877, 356235822660837879, 2644187054283807954, 19626676300599636003
Offset: 1
Links
- Ray Chandler, Table of n, a(n) for n = 1..1149
- Index entries for linear recurrences with constant coefficients, signature (6,10,5,-5,-9,-5,-1).
Programs
-
Maple
A377918 := proc(n) local S; option remember; S:=[1, 11, 77, 566, 4197, 31148, 231193, 1716043]; if n <= 8 then S[n] else 6*A377918(n-1)+10*A377918(n-2)+5*A377918(n-3)-5*A377918(n-4)-9*A377918(n-5)-5*A377918(n-6)-A377918(n-7); fi; end; [seq(A377918(i),i=1..20)];
-
Mathematica
LinearRecurrence[{6, 10, 5, -5, -9, -5, -1}, {1, 11, 77, 566, 4197, 31148, 231193, 1716043}, 25] (* Paolo Xausa, Dec 02 2024 *)
Formula
G.f. = (x^7+6*x^6+15*x^5+19*x^4+11*x^3-x^2-5*x-1)/((1-x)*(x^6+6*x^5+15*x^4+20*x^3+15*x^2+5*x-1)) (From g.f. for A377917).
Recurrence: See Maple code.
The smallest root of the denominator of the g.f. is 0.134724138401519... whose reciprocal is (say) c1 = 7.422574840... Then a(n) is asymptotically c2*c1^n, for n >= 0, where c2 = 1.3824387... This is an excellent approximation. It gives a(22) = 0.1962667617*10^20, compared with a(22) = 19626676300599636003.
This also enables us to give a formula for the lower envelope of A342042 - see that entry for details.
Extensions
More terms added based on A377917. - N. J. A. Sloane, Dec 01 2024
Comments