This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377930 #21 Nov 13 2024 08:29:07 %S A377930 0,1,1,0,1,0,2,1,1,2,0,2,0,2,0,1,1,2,2,1,1,0,1,0,2,0,1,0,3,1,1,2,2,1, %T A377930 1,3,0,3,0,2,0,2,0,3,0,1,1,3,2,1,1,2,3,1,1,0,1,0,3,0,1,0,3,0,1,0,2,1, %U A377930 1,2,3,1,1,3,2,1,1,2,0,2,0,2,0,3,0,3,0,2,0,2,0 %N A377930 Square array A(n, k), n, k > 0, read by antidiagonals; A(n, k) = max(A007814(n), A007814(k)). %C A377930 Let K_0 = [0], and for any m > 0, K_m is obtained by arranging four copies of K_{m-1} around a "plus" shape made of m's as follows: %C A377930 +---------+---+---------+ %C A377930 | | m | | %C A377930 | | | | %C A377930 | K_{m-1} | . | K_{m-1} | %C A377930 | | . | | %C A377930 | | . | | %C A377930 +---+ +---------+ +---------+ %C A377930 K_0 = | 0 |, for m > 0, K_m = |m ... m ... m| %C A377930 +---+ +---------+ +---------+ %C A377930 | | . | | %C A377930 | | . | | %C A377930 | K_{m-1} | . | K_{m-1} | %C A377930 | | | | %C A377930 | | m | | %C A377930 +---------+---+---------+ %C A377930 The square array A is the limit of K_m as m tends to infinity. %F A377930 A(n, k) = A(k, n). %F A377930 A(n, 0) = A(n, n) = A007814(n). %e A377930 Array A(n, k) begins: %e A377930 +---+---+---+---+---+---+---+ %e A377930 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | %e A377930 +---+ +---+ +---+ +---+ %e A377930 | 1 1 1 | 2 | 1 1 1 | %e A377930 +---+ +---+ +---+ +---+ %e A377930 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | %e A377930 +---+---+---+ +---+---+---+ %e A377930 | 2 2 2 2 2 2 2 | %e A377930 +---+---+---+ +---+---+---+ %e A377930 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | %e A377930 +---+ +---+ +---+ +---+ %e A377930 | 1 1 1 | 2 | 1 1 1 | %e A377930 +---+ +---+ +---+ +---+ %e A377930 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | %e A377930 +---+---+---+---+---+---+---+ %t A377930 A[n_,k_]:=Max[IntegerExponent[n,2],IntegerExponent[k,2]]; Table[A[n-k+1,k],{n,13},{k,n}]//Flatten (* _Stefano Spezia_, Nov 13 2024 *) %o A377930 (PARI) A(n, k) = max(valuation(n, 2), valuation(k, 2)) %Y A377930 Cf. A003984, A007814, A053398. %K A377930 nonn,easy,tabl %O A377930 1,7 %A A377930 _Rémy Sigrist_, Nov 11 2024