cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377941 Triangle read by rows: T(n,k) = number of free polyominoes with n cells, where the maximum number of cells in any row or column is k.

This page as a plain text file.
%I A377941 #26 Feb 14 2025 10:49:57
%S A377941 1,0,1,0,1,1,0,2,2,1,0,1,8,2,1,0,1,17,13,3,1,0,1,39,45,19,3,1,0,1,79,
%T A377941 182,77,25,4,1,0,1,162,607,363,114,33,4,1,0,1,301,2004,1539,593,170,
%U A377941 41,5,1,0,1,589,6139,6361,2764,928,234,51,5,1,0,1,1141,18278,25072,12733,4597,1387,323,61,6,1
%N A377941 Triangle read by rows: T(n,k) = number of free polyominoes with n cells, where the maximum number of cells in any row or column is k.
%C A377941 The row sum are the total number of polyominoes with n cells.
%H A377941 John Mason, <a href="/A377941/b377941.txt">Table of n, a(n) for n = 1..153</a> (17 rows)
%H A377941 Dave Budd, <a href="https://github.com/daveisagit/oeis/blob/main/square_lattice/connected_nodes.py">Python code for a square lattice</a>
%e A377941    | k
%e A377941 n  |       1      2      3      4      5      6      7      8      9     10  Total
%e A377941 ----------------------------------------------------------------------------------
%e A377941  1 |       1                                                                     1
%e A377941  2 |       0      1                                                              1
%e A377941  3 |       0      1      1                                                       2
%e A377941  4 |       0      2      2      1                                                5
%e A377941  5 |       0      1      8      2      1                                        12
%e A377941  6 |       0      1     17     13      3      1                                 35
%e A377941  7 |       0      1     39     45     19      3      1                         108
%e A377941  8 |       0      1     79    182     77     25      4      1                  369
%e A377941  9 |       0      1    162    607    363    114     33      4      1          1285
%e A377941 10 |       0      1    301   2004   1539    593    170     41      5      1   4655
%e A377941  ...
%e A377941 The T(4,2)=2 polyominoes are:
%e A377941   * *      * *
%e A377941   * *        * *
%Y A377941 Row sums are A000105.
%Y A377941 Cf. A377942.
%K A377941 nonn,tabl
%O A377941 1,8
%A A377941 _Dave Budd_, Nov 11 2024
%E A377941 More terms from _Pontus von Brömssen_, Nov 12 2024