cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377942 Triangle read by rows: T(n,k) = number of free polyominoes with n cells, where the maximum number of collinear cell centers on any line in the plane is k.

This page as a plain text file.
%I A377942 #34 Feb 14 2025 17:28:05
%S A377942 1,0,1,0,1,1,0,2,2,1,0,0,9,2,1,0,0,18,13,3,1,0,0,37,48,19,3,1,0,0,62,
%T A377942 200,77,25,4,1,0,0,86,678,369,114,33,4,1,0,0,78,2177,1590,593,170,41,
%U A377942 5,1,0,0,61,6280,6739,2774,928,234,51,5,1,0,0,34,17187,27153,12851,4597,1387,323,61,6,1
%N A377942 Triangle read by rows: T(n,k) = number of free polyominoes with n cells, where the maximum number of collinear cell centers on any line in the plane is k.
%C A377942 The row sum is the number of free polyominoes with n cells.
%H A377942 John Mason, <a href="/A377942/b377942.txt">Table of n, a(n) for n = 1..153</a>
%H A377942 Dave Budd, <a href="https://github.com/daveisagit/oeis/blob/main/square_lattice/connected_nodes.py">Python code for a square lattice</a>
%e A377942    |  k
%e A377942 n  |       1      2      3      4      5      6      7      8      9     10
%e A377942 ----------------------------------------------------------------------------
%e A377942  1 |       1
%e A377942  2 |       0      1
%e A377942  3 |       0      1      1
%e A377942  4 |       0      2      2      1
%e A377942  5 |       0      0      9      2      1
%e A377942  6 |       0      0     18     13      3      1
%e A377942  7 |       0      0     37     48     19      3      1
%e A377942  8 |       0      0     62    200     77     25      4      1
%e A377942  9 |       0      0     86    678    369    114     33      4      1
%e A377942 10 |       0      0     78   2177   1590    593    170     41      5      1
%e A377942 ...
%e A377942 From _John Mason_, Feb 14 2025: (Start)
%e A377942 The first difference with A377941 occurs at n=5 when the following polyomino has maximum number of row or column cells = 2, but there are 3 cells on a 45 degree diagonal.
%e A377942  O
%e A377942  OO
%e A377942   OO
%e A377942 (End)
%Y A377942 Row sums are A000105.
%Y A377942 Cf. A377941.
%K A377942 nonn,tabl
%O A377942 1,8
%A A377942 _Dave Budd_, Nov 11 2024
%E A377942 More terms from _Pontus von Brömssen_, Nov 12 2024