cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A056954 Numbers k such that k^2 divides A056819(k).

Original entry on oeis.org

1, 30, 60, 90, 105, 120, 132, 144, 168, 180, 210, 240, 252, 264, 280, 336, 360, 380, 396, 420, 495, 504, 520, 528, 540, 546, 552, 560, 612, 616, 630, 660, 720, 728, 756, 760, 792, 840, 858, 870, 900, 924, 990, 1008, 1040, 1050, 1056, 1080, 1092, 1104
Offset: 1

Views

Author

Leroy Quet, Sep 06 2000

Keywords

Comments

From Amiram Eldar, Nov 12 2024: (Start)
Equivalently, numbers k that divide A377484(k) = Product_{d|k, d>1} (d - 1).
After the first term a(1) = 1, the next odd term is a(5) = 105, the next term that is coprime to 6 is a(228) = 6545, and the next term that is coprime to 30 is a(574) = 19019. (End)

Examples

			30 is a term because 30^2 divides A056819(30) = 5320224000.
		

Crossrefs

A377949 is a subsequence.
Similar sequences: A355331, A377950, A377952.

Programs

  • Mathematica
    Select[Range[1000], Divisible[Times @@ (Rest@ Divisors[#] - 1), #] &] (* Amiram Eldar, Nov 12 2024 *)
  • PARI
    is(k) = if(k == 1, 1, my(d = divisors(k)); !(prod(i = 2, #d, d[i]-1) % k)); \\ Amiram Eldar, Nov 12 2024

A377951 Numbers k such that k | A057643(k) and (k+1) | A057643(k+1).

Original entry on oeis.org

1, 799799, 1204280, 2460975, 3382379, 6116175, 7050120, 8070699, 13339424, 20966049, 28460600, 41265680, 41463135, 52404624, 66108399, 68919080, 72946224, 81102944, 84479680, 102971924, 106663304, 110791736, 112375899, 115225439, 118333215, 131115984, 132073424
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2024

Keywords

Comments

Numbers k such that k and k+1 are both terms in A377950.

Crossrefs

Cf. A057643.
Subsequence of A377950.
Similar sequences: A355332, A377949, A377953.

Programs

  • Mathematica
    q[n_] := q[n] = Divisible[LCM @@ (Divisors[n] + 1), n]; Select[Range[4*10^6], q[#] && q[# + 1] &]
  • PARI
    is1(k) = !(lcm(apply(x->x+1, divisors(k))) % k);
    lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}

A377953 Numbers k such that k | A084190(k) and (k+1) | A084190(k+1).

Original entry on oeis.org

310155, 2566025, 2853135, 5746455, 6515145, 7329608, 8459360, 11291091, 15446079, 16181535, 26782224, 26942475, 32364464, 34318844, 36951200, 38579442, 38596239, 38763900, 40564524, 41273154, 47308976, 47648600, 49309715, 50163735, 51177224, 52573520, 58524465, 63668079
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2024

Keywords

Comments

Numbers k such that k and k+1 are both terms in A377952.

Crossrefs

Cf. A084190.
Subsequence of A377952.
Similar sequences: A355332, A377949, A377951.

Programs

  • Mathematica
    q[n_] := q[n] = n == 1 || Divisible[LCM @@ (Rest @ Divisors[n] - 1), n] ; Select[Range[3*10^6], q[#] && q[# + 1] &]
  • PARI
    is1(k) = !(lcm(apply(x -> if(x > 1, x-1, x), divisors(k))) % k);
    lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}

A378055 Numbers k such that k | A378053(k) and (k+1) | A378053(k+1).

Original entry on oeis.org

638000, 13466816, 14753024, 16092999, 19494189, 38137749, 63668079, 80061344, 86119704, 107232255, 112375899, 121550624, 127205000, 154466675, 294147854, 391738599, 553140224, 561712095, 682199595, 728999999, 871651143, 879207615, 911062844, 920985624, 1017609999
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2024

Keywords

Crossrefs

Intersection of A355332 and A377949.
Subsequence of A378054.

Programs

  • Mathematica
    q[n_] := q[n] = And @@ Divisible[{Times @@ ((d = Divisors[n]) + 1), Times @@ (Rest@d - 1)}, n]; Select[Range[2*10^7], q[#] && q[# + 1] &]
  • PARI
    is1(k) = if(k == 1, 1, my(d = divisors(k)); !(gcd(prod(k=1, #d, d[k]+1), prod(k=2, #d, d[k]-1)) % k));
    lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}
Showing 1-4 of 4 results.