cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378827 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a pentagonal icositetrahedron.

Original entry on oeis.org

2, 3, 7, 9, 0, 4, 4, 9, 1, 4, 8, 3, 8, 8, 1, 0, 6, 8, 1, 7, 1, 9, 5, 3, 7, 2, 9, 1, 1, 6, 4, 6, 2, 0, 0, 6, 6, 1, 2, 8, 0, 3, 0, 2, 3, 5, 6, 8, 8, 5, 5, 3, 5, 2, 6, 9, 1, 8, 3, 3, 0, 5, 2, 5, 7, 5, 1, 9, 5, 2, 5, 8, 7, 6, 9, 1, 9, 6, 5, 8, 6, 9, 2, 1, 0, 0, 1, 0, 3, 3
Offset: 1

Views

Author

Paolo Xausa, Dec 10 2024

Keywords

Comments

The pentagonal icositetrahedron is the dual polyhedron of the snub cube.

Examples

			2.37904491483881068171953729116462006612803023...
		

Crossrefs

Cf. A378823 (surface area), A378824 (volume), A378825 (inradius), A378826 (midradius).
Cf. A377969 and A377970 (dihedral angles of a snub cube).

Programs

  • Mathematica
    First[RealDigits[ArcCos[Root[7*#^3 - #^2 - 3*# + 1 &, 1]], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["PentagonalIcositetrahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(c), where c is the real root of 7*x^3 - x^2 - 3*x + 1.

A377969 Decimal expansion of the dihedral angle, in radians, between triangular faces in a snub cube.

Original entry on oeis.org

2, 6, 7, 4, 4, 4, 8, 0, 8, 3, 5, 3, 5, 2, 2, 8, 6, 8, 1, 5, 5, 6, 7, 4, 0, 8, 5, 5, 8, 5, 8, 7, 2, 8, 6, 4, 0, 9, 8, 5, 2, 2, 4, 9, 9, 7, 0, 6, 2, 2, 7, 6, 3, 8, 2, 4, 8, 0, 0, 6, 2, 7, 6, 5, 8, 2, 4, 2, 6, 4, 5, 6, 6, 4, 1, 2, 3, 4, 7, 1, 5, 1, 0, 4, 9, 8, 1, 5, 7, 3
Offset: 1

Views

Author

Paolo Xausa, Nov 13 2024

Keywords

Examples

			2.674448083535228681556740855858728640985224997062...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi - ArcCos[Root[27*#^3 + 9*#^2 - 15*# - 13 &, 1]], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["SnubCube", "DihedralAngles"]], 10, 100]]

Formula

Equals 2*arcsec(sqrt(12*A377604^2 - 3)).
Equals Pi - arccos((2*A058265 - 1)/3).
Equals Pi - arccos(c), where c is the real root of 27*x^3 + 9*x^2 - 15*x - 13.
Showing 1-2 of 2 results.