This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377975 #14 Aug 03 2025 10:31:58 %S A377975 1,0,-42,-2772,-5399688,-704781084,-943173698460,-180121119486672, %T A377975 -188146584694894350,-46293152603021155692,-40574254265781269371884, %U A377975 -11963000065787771567311500,-9221266403646163252100062068,-3107813621461888912485774582588,-2176998806586925223600540321844120 %N A377975 Expansion of the 6048th root of the series 2*E_6(x) - E_6(x)^2, where E_6 is the Eisenstein series of weight 6. %C A377975 Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_6(x) lies in P(12) (Heninger et al.). %C A377975 We claim that the series 2*E_6(x) - E_6(x)^2 belongs to P(6048). %C A377975 Proof. %C A377975 E_6(x) = 1 - 504*Sum_{n >= 1} sigma_5(n)*x^n. Hence, %C A377975 2*E_6(x) - E_6(x)^2 = 1 - (504^2)*( Sum_{n >= 1} sigma_5(n)*x^n )^2 is in R. %C A377975 Hence, 2*E_6(x) - E_6(x)^2 == 1 (mod 504^2) == 1 (mod (2^6)*(3^4)*(7^2)). %C A377975 It follows from Heninger et al., Theorem 1, Corollary 2, that the series 2*E_6(x) - E_6(x)^2 belongs to P((2^5)*(3^3)*7) = P(6048). End Proof. %F A377975 a(n) ~ c / (r^n * n^(6049/6048)), where r = 0.0018674427317079888144302129348270303934228050024753171993815386383179351229... is the root of the equation Sum_{k>=1} sigma_5(k) * r^k = 1/504 and c = -0.0001653486643613776568861731992670297686378824546... - _Vaclav Kotesovec_, Aug 03 2025 %p A377975 with(numtheory): %p A377975 E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end: %p A377975 seq(coeftayl((2*E(6) - E(6)^2)^(1/6048), q = 0, n),n = 0..20); %t A377975 terms = 20; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E6[x] - E6[x]^2)^(1/6048), {x, 0, terms}], x] (* _Vaclav Kotesovec_, Aug 03 2025 *) %Y A377975 Cf. A013973 (E_6), A109817 ( (E_6)^1/12 ), A280869 (E_6)^2, A341871 - A341875, A377973, A377974, A377976, A377977. %K A377975 sign,easy %O A377975 0,3 %A A377975 _Peter Bala_, Nov 14 2024