This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377994 #10 Nov 13 2024 18:29:22 %S A377994 1,2,3,6,7,9,12,13,15,18,19,21,24,26,28,29,32,34,36,37,39,42,43,45,48, %T A377994 50,52,53,55,57,60,61,63,65,68,70,71,74,76,78,79,81,84,86,88,89,91,93, %U A377994 95,98,100,101,104,106,107,110,112,113,115,117,119,121,123,125 %N A377994 Numbers k such that k + PrimePi(k) is odd. %H A377994 Paolo Xausa, <a href="/A377994/b377994.txt">Table of n, a(n) for n = 1..10000</a> %t A377994 Select[Range[200], OddQ[# + PrimePi[#]] &] %o A377994 (Python) %o A377994 from sympy import prevprime, primepi %o A377994 def A377994(n): %o A377994 def f(x): %o A377994 if x<=3: return n %o A377994 p = prevprime(x+1) %o A377994 i = int(primepi(p)) %o A377994 return n+(p>>1)+(x-p-((i^x)&1)>>1) %o A377994 m, k = n, f(n) %o A377994 while m != k: m, k = k, f(k) %o A377994 return m # _Chai Wah Wu_, Nov 13 2024 %o A377994 (Python) %o A377994 from sympy import nextprime %o A377994 def A377994_gen(): # generator of terms %o A377994 p,q,a = 3,5,0 %o A377994 yield from (1,2) %o A377994 while True: %o A377994 yield from range(p+a,q,2) %o A377994 p, q, a = q, nextprime(q), a^1 %o A377994 A377994_list = list(islice(A377994_gen(),40)) # _Chai Wah Wu_, Nov 13 2024 %Y A377994 Complement of A377897. %Y A377994 Cf. A000720. %K A377994 nonn,easy %O A377994 1,2 %A A377994 _Paolo Xausa_, Nov 13 2024