This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377995 #9 Nov 16 2024 07:25:47 %S A377995 2,5,8,8,0,1,8,2,9,4,6,9,2,7,4,7,9,8,6,9,5,4,1,1,0,6,5,3,1,9,0,2,3,4, %T A377995 3,6,4,1,6,2,1,4,5,5,7,6,6,7,4,3,8,9,4,9,7,6,3,6,6,7,4,9,8,8,5,9,0,9, %U A377995 6,1,2,3,6,7,9,7,5,2,7,6,0,1,6,2,1,3,2,6,2,6 %N A377995 Decimal expansion of the dihedral angle, in radians, between square and pentagonal faces in a (small) rhombicosidodecahedron. %C A377995 Also the dihedral angle, in radians, between square and 10-gonal faces in a truncated icosidodecahedron (great rhombicosidodecahedron). %H A377995 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GreatRhombicosidodecahedron.html">Great Rhombicosidodecahedron</a>. %H A377995 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SmallRhombicosidodecahedron.html">Small Rhombicosidodecahedron</a>. %F A377995 Equals arccos(-sqrt((5 + sqrt(5))/10)) = arccos(-sqrt(A242671)). %e A377995 2.588018294692747986954110653190234364162145576674... %t A377995 First[RealDigits[ArcCos[-Sqrt[(5 + Sqrt[5])/10]], 10, 100]] (* or *) %t A377995 First[RealDigits[Min[PolyhedronData["Rhombicosidodecahedron", "DihedralAngles"]], 10, 100]] %Y A377995 Cf. A242671, A377996. %K A377995 nonn,cons,easy %O A377995 1,1 %A A377995 _Paolo Xausa_, Nov 15 2024