This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378002 #26 Nov 17 2024 07:10:10 %S A378002 72,288,432,864,1152,1800,2592,3456,4608,5400,6912,7200,10368,10800, %T A378002 15552,18432,21600,27648,28800,31104,41472,43200,54000,55296,62208, %U A378002 64800,73728,86400,88200,93312,108000,115200,124416,162000,165888,172800,194400,221184,259200 %N A378002 Achilles numbers that are products of primorials. %C A378002 Products of primorials that are powerful but not perfect powers. %H A378002 Michael De Vlieger, <a href="/A378002/b378002.txt">Table of n, a(n) for n = 1..10000</a> %F A378002 Intersection of A286708 \ A001597 and A025487. %F A378002 Intersection of A052486 and A025487. %F A378002 Proper subset of A364930, in turn a proper subset of A369374. %F A378002 Proper subset of A377854. %e A378002 Prime power decomposition of the first 12 terms: %e A378002 a(1) = 72 = 2^3 * 3^2 %e A378002 a(2) = 288 = 2^5 * 3^2 %e A378002 a(3) = 432 = 2^4 * 3^3 %e A378002 a(4) = 864 = 2^5 * 3^3 %e A378002 a(5) = 1152 = 2^7 * 3^2 %e A378002 a(6) = 1800 = 2^3 * 3^2 * 5^2 %e A378002 a(7) = 2592 = 2^5 * 3^4 %e A378002 a(8) = 3456 = 2^7 * 3^3 %e A378002 a(9) = 4608 = 2^9 * 3^2 %e A378002 a(10) = 5400 = 2^3 * 3^3 * 5^2 %e A378002 a(11) = 6912 = 2^8 * 3^3 %e A378002 a(12) = 7200 = 2^5 * 3^2 * 5^2 %t A378002 (* First load function f in A025487, then: *) %t A378002 Select[Rest@ Union@ Flatten@ f[14], %t A378002 And[Divisible[#, Apply[Times, #2[[All, 1]] ]^2], %t A378002 GCD @@ #2[[All, -1]] == 1] & @@ {#, FactorInteger[#]} &] %Y A378002 Cf. A001597, A001694, A002110, A007947, A052486, A025487, A286708, A364930, A377854. %K A378002 nonn,easy %O A378002 1,1 %A A378002 _Michael De Vlieger_, Nov 16 2024