This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378006 #15 Nov 14 2024 23:23:53 %S A378006 1,1,1,1,0,1,1,0,1,1,1,0,0,0,1,1,0,0,1,1,1,1,0,0,0,0,0,1,1,0,0,0,2,0, %T A378006 1,1,1,0,0,0,0,0,2,0,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,0, %U A378006 0,0,0,0,2,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1 %N A378006 Square table read by descending antidiagonals: the k-th column has Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo k. %C A378006 For fixed k, we have Product_{chi} L(chi,s) = Product_{p not dividing k} 1/(1 - 1/p^(ord(p,k)*s))^(phi(k)/ord(p,k)), where phi = A000010 is the Euler totient function and ord(a,k) is the multiplicative order of a modulo k; see Section 3.4 of Chapter VI, Proposition 13, page 72 of J.-P. Serre, A Course in Arithmetic. Using the series expansion of 1/(1-x)^r, we get Product_{chi} L(chi,s) = Product_{p not dividing k} (Sum_{n>=0} binomial(n+phi(k)/ord(p,k)-1,phi(k)/ord(p,k)-1)/p^(ord(p,k)*s)), giving us the formula to calculate T(n,k). %C A378006 From the formula we can wee that T(n,k) = 0 unless n == 1 (mod k). A378007 is the condensed version giving only {T(k*n+1,k)}. %H A378006 Jianing Song, <a href="/A378006/b378006.txt">Table of n, a(n) for n = 1..11325</a> (the first 150 diagonals, with n+k = 2..151) %H A378006 J.-P. Serre, <a href="https://www.math.purdue.edu/~jlipman/MA598/Serre-Course%20in%20Arithmetic.pdf">A Course in Arithmetic</a>, Springer-Verlag, 1973. %F A378006 Each column is multiplicative: T(p^e,k) = 0 if p divides k; 0 if e is not divisible by ord(p,k); binomial(e/ord(p,k)+phi(k)/ord(p,k)-1,phi(k)/ord(p,k)-1) otherwise. %F A378006 For odd k, T(2*k,n) = T(k,n) for odd n, 0 for even n. %e A378006 Table starts %e A378006 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A378006 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A378006 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A378006 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ... %e A378006 1, 1, 0, 2, 0, 0, 0, 0, 0, 0, ... %e A378006 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A378006 1, 1, 2, 0, 0, 2, 0, 0, 0, 0, ... %e A378006 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, ... %e A378006 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, ... %e A378006 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A378006 See A378007 for more details. %o A378006 (PARI) A378006(n,k) = { %o A378006 my(f = factor(n), res = 1); for(i=1, #f~, if(k % f[i,1] == 0, return(0)); %o A378006 my(d = znorder(Mod(f[i,1],k))); if(f[i,2] % d != 0, return(0), my(m = f[i,2]/d, r = eulerphi(k)/d); res *= binomial(m+r-1,r-1))); %o A378006 res;} %Y A378006 Columns: A000012 (k=1), A000035 (k=2), A045833 (k=3), A008442 (k=4). %Y A378006 Cf. A378007. %K A378006 nonn,tabl,easy %O A378006 1,33 %A A378006 _Jianing Song_, Nov 14 2024