A378010 a(n) = b(8*n+1), with the sequence {b(n)} having Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo 8; 8th column of A378007.
1, 2, 4, 2, 0, 4, 2, 0, 0, 4, 3, 4, 4, 0, 4, 2, 0, 4, 0, 8, 0, 2, 0, 0, 4, 0, 0, 0, 4, 4, 4, 0, 4, 0, 0, 4, 10, 0, 0, 4, 0, 0, 4, 0, 4, 2, 8, 0, 0, 0, 4, 4, 0, 8, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 4, 4, 0, 4, 4, 0, 4, 3, 0, 4, 0, 8, 0, 4, 0, 0, 16, 0, 0, 0
Offset: 0
Examples
(1 + 1/3^s + 1/5^s + 1/7^s + ...)*(1 + 1/3^s - 1/5^s - 1/7^s + ...)*(1 - 1/3^s + 1/5^s - 1/7^s + ...)*(1 - 1/3^s - 1/5^s + 1/7^s + ...) = 1 + 2/9^s + 4/17^s + 2/25^s + 4/41^s + 2/49^s + 4/73^s + 3/81^s + ...
Links
- Jianing Song, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A378007.
Programs
-
PARI
A378010(n) = { my(f = factor(8*n+1), res = 1); for(i=1, #f~, if(f[i,1] % 8 == 1, res *= binomial(f[i,2]+3, 3)); if(f[i,1] % 8 == 3 || f[i,1] % 8 == 5 || f[i,1] % 8 == 7, if(f[i,2] % 2 == 0, res *= f[i,2]/2+1, return(0)))); res; }
Formula
a(n) = b(8*n+1), where {b(n)} is multiplicative with:
- b(2^e) = 0;
- for p == 1 (mod 8), b(p^e) = binomial(e+3,3) = (e+3)*(e+2)*(e+1)/6;
- for p == 3, 5, 7 (mod 8), b(p^e) = e/2 + 1 if e is even, and 0 otherwise.