A378012 a(n) = b(10*n+1), with the sequence {b(n)} having Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo 10; 10th column of A378007.
1, 4, 0, 4, 4, 0, 4, 4, 1, 0, 4, 0, 10, 4, 0, 4, 0, 0, 4, 4, 0, 4, 0, 0, 4, 4, 0, 4, 4, 0, 0, 4, 0, 4, 16, 0, 2, 0, 0, 0, 4, 0, 4, 4, 0, 16, 4, 0, 0, 4, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 4, 0, 0, 4, 4, 0, 4, 16, 0, 4, 4, 0, 0, 0, 0, 4, 4, 0, 16, 0, 0, 4, 4, 0, 2, 0, 0, 0, 4, 4, 0
Offset: 0
Examples
(1 + 1/3^s + 1/7^s + 1/9^s + ...)*(1 + i/3^s - i/7^s - 1/9^s + ...)*(1 - 1/3^s - 1/7^s + 1/9^s + ...)*(1 - i/3^s + i/7^s - 1/9^s + ...) = 1 + 4/11^s + 4/31^s + 4/41^s + 4/61^s + 4/71^s + 1/81^s + 4/101^s + ...
Links
- Jianing Song, Table of n, a(n) for n = 0..10000
Programs
-
PARI
A378012(n) = { my(f = factor(10*n+1), res = 1); for(i=1, #f~, if(f[i,1] % 10 == 1, res *= binomial(f[i,2]+3, 3)); if(f[i,1] % 10 == 9, if(f[i,2] % 2 == 0, res *= f[i,2]/2+1, return(0))); if(f[i,1] % 10 == 3 || f[i,1] % 10 == 7, if(f[i,2] % 4 != 0, return(0)))); res; }
Formula
a(n) = b(10*n+1), where {b(n)} is multiplicative with:
- b(2^e) = b(5^e) = 0;
- for p == 1 (mod 10), b(p^e) = binomial(e+3,3) = (e+3)*(e+2)*(e+1)/6;
- for p == 9 (mod 10), b(p^e) = e/2 + 1 if e is even, and 0 otherwise;
- for p == 3, 7 (mod 10), b(p^e) = 1 if 4 divides e, and 0 otherwise.
a(n) = A378008(2*n).