This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378032 #7 Nov 17 2024 21:39:02 %S A378032 1,1,4,4,9,12,16,18,20,28,28,36,40,40,45,52,56,60,64,68,72,76,81,88, %T A378032 96,100,100,104,108,112,126,128,136,136,148,150,156,162,164,172,176, %U A378032 180,189,192,196,198,208,220,225,228,232,236,240,250,256,261,268,270 %N A378032 a(1) = a(2) = 1; a(n>2) is the greatest nonsquarefree number < prime(n). %F A378032 a(n) = A378033(prime(n)). %e A378032 The terms together with their prime indices begin: %e A378032 1: {} %e A378032 1: {} %e A378032 4: {1,1} %e A378032 4: {1,1} %e A378032 9: {2,2} %e A378032 12: {1,1,2} %e A378032 16: {1,1,1,1} %e A378032 18: {1,2,2} %e A378032 20: {1,1,3} %e A378032 28: {1,1,4} %e A378032 28: {1,1,4} %e A378032 36: {1,1,2,2} %e A378032 40: {1,1,1,3} %e A378032 40: {1,1,1,3} %e A378032 45: {2,2,3} %e A378032 52: {1,1,6} %e A378032 56: {1,1,1,4} %e A378032 60: {1,1,2,3} %e A378032 64: {1,1,1,1,1,1} %e A378032 68: {1,1,7} %e A378032 72: {1,1,1,2,2} %t A378032 Table[NestWhile[#-1&,Prime[n],#>1&&SquareFreeQ[#]&],{n,100}] %Y A378032 Terms appearing twice are A061351 + 1. %Y A378032 For prime-powers we have A065514 (diffs A377781), opposite A345531 (diffs A377703). %Y A378032 For squarefree we have A112925 (differences A378038). %Y A378032 The opposite for squarefree is A112926 (differences A378037). %Y A378032 The opposite is A377783 (union A378040), restriction of A120327 (differences A378039). %Y A378032 Restriction of A378033, which has differences A378036. %Y A378032 The first-differences are A378034, opposite A377784. %Y A378032 A000040 lists the primes, differences A001223, seconds A036263. %Y A378032 A005117 lists the squarefree numbers. %Y A378032 A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593. %Y A378032 A061398 counts squarefree numbers between primes (sums A337030), zeros A068360. %Y A378032 A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361. %Y A378032 A070321 gives the greatest squarefree number up to n. %Y A378032 A377046 encodes k-differences of nonsquarefree numbers, zeros A377050. %Y A378032 Cf. A053797, A053806, A072284, A065890, A224363, A366833, A377431. %Y A378032 Cf. A377047, A377048, A377049, A377430, A378082, A378083, A378084. %K A378032 nonn %O A378032 1,3 %A A378032 _Gus Wiseman_, Nov 16 2024