cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378046 E.g.f. satisfies A(x) = (1+x) * exp(x * A(x)^3 / (1+x)^2).

This page as a plain text file.
%I A378046 #10 Feb 16 2025 08:34:07
%S A378046 1,2,11,169,4049,132881,5542495,280694135,16730578625,1147444968385,
%T A378046 89015365063991,7707022678811567,736734708409976017,
%U A378046 77070404075178587633,8757816984586841345231,1074244834335107678837191,141469329806979182825146625,19908315372027482035799282177
%N A378046 E.g.f. satisfies A(x) = (1+x) * exp(x * A(x)^3 / (1+x)^2).
%H A378046 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A378046 E.g.f.: (1+x) * exp( -LambertW(-3*x*(1+x))/3 ).
%F A378046 a(n) = n! * Sum_{k=0..n} (3*k+1)^(k-1) * binomial(k+1,n-k)/k!.
%o A378046 (PARI) a(n) = n!*sum(k=0, n, (3*k+1)^(k-1)*binomial(k+1, n-k)/k!);
%Y A378046 Cf. A377826, A378045.
%Y A378046 Cf. A363478.
%K A378046 nonn
%O A378046 0,2
%A A378046 _Seiichi Manyama_, Nov 15 2024