cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A378058 Numbers k that divide A378056(k) = gcd(lcm{d+1 : d|k}, lcm{d-1 : d > 1 and d|k}).

Original entry on oeis.org

1, 60, 210, 360, 420, 504, 630, 660, 840, 924, 1092, 1260, 1320, 1560, 1848, 1980, 2184, 2310, 2520, 2640, 2772, 3080, 3120, 3276, 3465, 3960, 4080, 4284, 4620, 4680, 5320, 5460, 5544, 6006, 6552, 6732, 6840, 6864, 6930, 7140, 7800, 7854, 7920, 8190, 8280, 8568, 8580, 9240, 9360, 9828
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2024

Keywords

Comments

After the first term a(1) = 1, the next odd term is a(25) = 3465, the next term that is coprime to 6 is a(308) = 95095, and the next term that is coprime to 30 is a(13544) = 10023013.

Examples

			60 is a term since A378056(60) = 4620 = 60 * 77 is divisible by 60.
		

Crossrefs

Intersection of A377950 and A377952.
A378059 is a subsequence.

Programs

  • Mathematica
    s[n_] := Module[{d = Divisors[n]}, GCD[LCM @@ (d + 1), LCM @@ (Rest @ d - 1)]]; s[1] = 1; Select[Range[10000], Divisible[s[#], #] &]
  • PARI
    is(k) = {my(d = divisors(k)); !(lcm(apply(x->x+1, d)) % k) && !(lcm(apply(x -> if(x > 1, x-1, x), d)) % k);}

A378057 Composite numbers k such that A378056(k) = gcd(lcm{d+1 : d|k}, lcm{d-1 : d > 1 and d|k}) = 2.

Original entry on oeis.org

6, 481, 793, 949, 1417, 2041, 2257, 2509, 2701, 2977, 3133, 3589, 3601, 4033, 4069, 4453, 4849, 5161, 5317, 5809, 5917, 5941, 6697, 7033, 7081, 7141, 7501, 7957, 7969, 8593, 8917, 9217, 9529, 9577, 10249, 10573, 10777, 11041, 11401, 11461, 11581, 11773, 12469, 12913, 12961
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2024

Keywords

Comments

A378056(p) = 2 for all odd primes p.
6 is the only even term.
The least term that is not a semiprime is a(114) = 29341 = 13 * 37 * 61, and the least term that has more than 3 distinct prime factors is a(4087545) = 1038565321 = 37 * 61 * 421 * 1093.

Crossrefs

Cf. A378056.

Programs

  • Mathematica
    s[n_] := Module[{d = Divisors[n]}, GCD[LCM @@ (d + 1), LCM @@ (Rest @ d - 1)]]; s[1] = 1; Select[Range[13000], CompositeQ[#] && s[#] == 2 &]
  • PARI
    is(k) = if(isprime(k), 0, my(d = divisors(k)); gcd(lcm(apply(x->x+1, d)), lcm(apply(x -> if(x > 1, x-1, x), d))) == 2);

A378059 Numbers k such k | A378056(k) and (k+1) | A378056(k+1).

Original entry on oeis.org

112375899, 871651143, 1525038515, 3524721824, 6058144224, 7616307699, 7929320399, 9778346864, 10799650575, 11536526000, 13663711775, 20596306224, 22326106256, 24442111385, 26385908912, 27394105760, 28476579725, 31552570400, 34148839725, 36045427040, 40916036304, 44037977984, 44430326199
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2024

Keywords

Crossrefs

Intersection of A377951 and A377953.
Subsequence of A378058.

Programs

  • PARI
    is1(k) = {my(d = divisors(k)); !(lcm(apply(x->x+1, d)) % k) && !(lcm(apply(x -> if(x > 1, x-1, x), d)) % k);}
    lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}

A378053 a(n) = gcd(Product_{d|n} (d + 1), Product_{d|n, d>1} (d - 1)) = gcd(A020696(n), A377484(n)).

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 2, 3, 16, 36, 2, 30, 4, 6, 16, 45, 4, 80, 2, 108, 16, 6, 2, 210, 24, 12, 32, 18, 4, 1008, 2, 45, 64, 12, 48, 8400, 4, 18, 16, 2268, 4, 240, 2, 90, 512, 18, 2, 3150, 32, 216, 64, 540, 4, 160, 144, 2430, 32, 12, 2, 166320, 4, 6, 1280, 405, 48, 1344
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := GCD[Times @@ ((d = Divisors[n]) + 1), Times @@ (Rest@ d - 1)]; Array[a, 70]
  • PARI
    a(n) = if(n == 1, 1, my(d = divisors(n)); gcd(prod(k=1, #d, d[k]+1), prod(k=2, #d, d[k]-1)));

Formula

a(n) = 2 if and only if n = 6 or n is a prime of the form 4*k+3 (A002145).
a(n) = 4 if and only if n is a prime of the form 4*k+1 (A002144).
a(n) == 1 (mod 2) if and only if n is a power of 2 (A000079).
Showing 1-4 of 4 results.