cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378060 a(n) = binomial(n, floor((n-1)/2))^2.

Original entry on oeis.org

0, 1, 1, 9, 16, 100, 225, 1225, 3136, 15876, 44100, 213444, 627264, 2944656, 9018009, 41409225, 130873600, 590976100, 1914762564, 8533694884, 28210561600, 124408576656, 418151049316, 1828114918084, 6230734868736, 27043120090000, 93271169290000, 402335398890000
Offset: 0

Views

Author

Peter Luschny, Dec 03 2024

Keywords

Comments

Number of walks of length n with unit steps in all four directions (NSWE), starting at the origin and ending on the y-axis, never going below the x-axis and the end point having a positive height.

Examples

			The 16 walks of length 4: NNNN, NNNS, NNSN, NNEW, NNWE, NSNN, NENW, NEWN, NWNE, NWEN, ENNW, ENWN, EWNN, WNNE, WNEN, WENN.
		

Crossrefs

Cf. A060150 (odd bisection), A337900 (even bisection), A037952, A378061.

Programs

  • Julia
    # Generates the walks (for illustration only).
    function aCount(n::Int)
        a = [""]
        c = 0
        for w in a
            if length(w) == n
                if (count('N', w) != count('S', w) && count('W', w) == count('E', w))
                    c += 1
                    # println(w)
                end
            else
                for j in "NSEW"
                    u = string(w, j)
                    if count('N', u) >= count('S', u)
                       push!(a, u)
        end end end end
        return c
    end
    println([aCount(n) for n in 0:11])
  • Maple
    a := n -> binomial(n, iquo(n+1, 2) - 1)^2: seq(a(n), n = 0..27);
    a := proc(n) option remember; if n < 2 then n else ((32*n^5 - 48*n^4 + 16*n^2)*a(n - 2) + (8*n^4 - 20*n^2)*a(n - 1))/(2*(n - 1)^2*(n - 1/2)*(n + 2)^2) fi end:
    # Alternative:
    egf := BesselI(0, 2*x)^2 + BesselI(1, 2*x)*BesselI(0, 2*x)*(1 - 1/x):
    ser := series(egf, x, 29): seq(n!*coeff(ser, x, n), n = 0..27);
  • Mathematica
    Array[Binomial[#, Floor[(# + 1)/2] - 1]^2 &, 28, 0] (* Michael De Vlieger, Dec 04 2024 *)

Formula

a(n) = n!*[x^n] (BesselI(0, 2*x)^2 + BesselI(1, 2*x)*BesselI(0, 2*x)*(1 - 1/x)).
a(n) = [x^n] (((8*x^2 + 2*x)*EllipticK(4*x) - Pi*(1 + x) + 2*EllipticE(4*x))/(4*x^2*Pi)).
a(n) = [x^n] (x*hypergeom([1,3/2,3/2], [2,2], 16*x^2) + x^2*hypergeom([3/2,3/2,2,2], [1,3,3], 16*x^2)).
a(n) = Sum_{k=0..n} (-1)^(n-k+N)*C(n-k, N)*C(n, k)*C(n+k, k), where N = floor((n-1)/2) and C = binomial.
Recurrence: a(n) = ((32*n^5 - 48*n^4 + 16*n^2)*a(n - 2) + (8*n^4 - 20*n^2)*a(n - 1))/(2*(n - 1)^2*(n - 1/2)*(n + 2)^2).
a(n) = Sum_{k=1..n} A378061(n, k).