This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378066 #11 Nov 18 2024 13:01:19 %S A378066 1,1,1,1,1,1,1,1,0,1,1,1,-3,-2,1,1,1,-8,-11,0,1,1,1,-15,-26,57,16,1,1, %T A378066 1,-24,-47,352,361,0,1,1,1,-35,-74,1185,1936,-2763,-272,1,1,1,-48, %U A378066 -107,2976,6241,-38528,-24611,0,1 %N A378066 Array read by ascending antidiagonals: A(n, k) = (-2*n)^k * Euler(k, (n - 1)/(2*n)) for n >= 1 and A(0, k) = 1. %C A378066 This is the counterpart of A377666, where A(1, n) are the secant numbers A122045(n). Here A(1, n) are the tangent numbers A155585(n). %F A378066 A(n, k) = k! * [x^k] exp(x)/cosh(n*x). %F A378066 A(n, k) = Sum_{j = 0..k} binomial(k, j) * Euler(j, 1/2) *(-2*n)^j. %e A378066 Array starts: %e A378066 [0] 1, 1, 1, 1, 1, 1, 1, ... A000012 %e A378066 [1] 1, 1, 0, -2, 0, 16, 0, ... A155585 %e A378066 [2] 1, 1, -3, -11, 57, 361, -2763, ... A188458 %e A378066 [3] 1, 1, -8, -26, 352, 1936, -38528, ... A000810 %e A378066 [4] 1, 1, -15, -47, 1185, 6241, -230895, ... A000813 %e A378066 [5] 1, 1, -24, -74, 2976, 15376, -906624, ... A378065 %e A378066 [6] 1, 1, -35, -107, 6265, 32041, -2749355, ... %e A378066 [7] 1, 1, -48, -146, 11712, 59536, -6997248, ... %p A378066 A := (n, k) -> ifelse(n = 0, 1, (-2*n)^k * euler(k, (n - 1) / (2*n))): %p A378066 for n from 0 to 7 do seq(A(n, k), k = 0..9) od; # row by row %p A378066 # Alternative: %p A378066 A := proc(n, k) local j; add(binomial(k, j)*euler(j, 1/2)*(-2*n)^j, j = 0..k) end: seq(seq(A(n - k, k), k = 0..n), n = 0..10); %p A378066 # Using generating functions: %p A378066 egf := n -> exp(x)/cosh(n*x): ser := n -> series(egf(n), x, 14): %p A378066 row := n -> local k; seq(k!*coeff(ser(n), x, k), k = 0..7): %p A378066 seq(lprint(row(n)), n = 0..7); %Y A378066 Rows: A000012, A155585, A188458, A000810, A000813, A378065. %Y A378066 Columns: A005563 (k=2), A080663 (k=3), A378064 (k=4). %Y A378066 Cf. A378063 (main diagonal), A377666 (secant), A081658 (column generating polynomials). %K A378066 sign,tabl %O A378066 0,13 %A A378066 _Peter Luschny_, Nov 15 2024