This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378082 #11 Dec 05 2024 10:47:46 %S A378082 12,16,18,20,24,40,48,54,60,63,68,72,75,80,84,90,98,108,112,116,128, %T A378082 132,150,152,160,164,168,175,180,184,192,196,198,200,212,224,228,232, %U A378082 234,240,242,252,260,264,270,272,279,294,308,312,315,320,332,338,348 %N A378082 Terms appearing only once in A377783 = least nonsquarefree number > prime(n). %C A378082 Nonsquarefree numbers k such that if p < q are the two greatest primes < k, there is at least one nonsquarefree number between p and q but all numbers between q and k are squarefree. - _Robert Israel_, Nov 20 2024 %e A378082 The terms together with their prime indices begin: %e A378082 12: {1,1,2} %e A378082 16: {1,1,1,1} %e A378082 18: {1,2,2} %e A378082 20: {1,1,3} %e A378082 24: {1,1,1,2} %e A378082 40: {1,1,1,3} %e A378082 48: {1,1,1,1,2} %e A378082 54: {1,2,2,2} %e A378082 60: {1,1,2,3} %e A378082 63: {2,2,4} %e A378082 68: {1,1,7} %e A378082 72: {1,1,1,2,2} %e A378082 75: {2,3,3} %e A378082 80: {1,1,1,1,3} %e A378082 84: {1,1,2,4} %e A378082 90: {1,2,2,3} %e A378082 98: {1,4,4} %e A378082 108: {1,1,2,2,2} %e A378082 112: {1,1,1,1,4} %e A378082 116: {1,1,10} %e A378082 128: {1,1,1,1,1,1,1} %e A378082 132: {1,1,2,5} %p A378082 q:= 3: R:= NULL: flag:= false: count:= 0: %p A378082 while count < 100 do %p A378082 p:= q; q:= nextprime(q); %p A378082 for k from p+1 to q-1 do %p A378082 found:= false; %p A378082 if not numtheory:-issqrfree(k) then %p A378082 if flag then %p A378082 count:= count+1; R:= R,k %p A378082 fi; %p A378082 found:= true; break %p A378082 fi; %p A378082 od; %p A378082 flag:= found; %p A378082 od: %p A378082 R; # _Robert Israel_, Nov 20 2024 %t A378082 y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}]; %t A378082 Select[Most[Union[y]],Count[y,#]==1&] %Y A378082 This is a transformation of A377783 (union A378040, differences A377784). %Y A378082 Note also A377783 restricts A120327 (differences A378039) to the primes. %Y A378082 Terms appearing twice are A378083. %Y A378082 Terms not appearing at all are A378084. %Y A378082 A000040 lists the primes, differences A001223, seconds A036263. %Y A378082 A005117 lists the squarefree numbers. %Y A378082 A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593. %Y A378082 A061398 counts squarefree numbers between primes, zeros A068360. %Y A378082 A061399 counts nonsquarefree numbers between primes, zeros A068361. %Y A378082 A070321 gives the greatest squarefree number up to n. %Y A378082 A071403(n) = A013928(prime(n)) counts squarefree numbers < prime(n). %Y A378082 A378086(n) = A057627(prime(n)) counts nonsquarefree numbers < prime(n). %Y A378082 Cf. A112926 (diffs A378037), opposite A112925 (diffs A378038). %Y A378082 Cf. A378032 (diffs A378034), restriction of A378033 (diffs A378036). %Y A378082 Cf. A053797, A053806, A072284, A112929, A120992, A224363, A337030, A377430, A377431, A377703. %K A378082 nonn %O A378082 1,1 %A A378082 _Gus Wiseman_, Nov 20 2024