This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378084 #5 Nov 24 2024 22:49:04 %S A378084 9,25,27,28,36,45,49,50,52,56,64,76,81,88,92,96,99,100,117,120,121, %T A378084 124,125,126,135,136,144,147,148,153,156,162,169,171,172,176,188,189, %U A378084 204,207,208,216,220,225,236,243,244,245,248,250,256,261,268,275,276,280 %N A378084 Nonsquarefree numbers not appearing in A377783 (least nonsquarefree number > prime(n)). %C A378084 Warning: do not confuse with A377784. %F A378084 Complement of A378040 in A013929. %e A378084 The terms together with their prime indices begin: %e A378084 9: {2,2} %e A378084 25: {3,3} %e A378084 27: {2,2,2} %e A378084 28: {1,1,4} %e A378084 36: {1,1,2,2} %e A378084 45: {2,2,3} %e A378084 49: {4,4} %e A378084 50: {1,3,3} %e A378084 52: {1,1,6} %e A378084 56: {1,1,1,4} %e A378084 64: {1,1,1,1,1,1} %e A378084 76: {1,1,8} %e A378084 81: {2,2,2,2} %e A378084 88: {1,1,1,5} %e A378084 92: {1,1,9} %e A378084 96: {1,1,1,1,1,2} %t A378084 nn=100; %t A378084 y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,nn}]; %t A378084 Complement[Select[Range[Prime[nn]],!SquareFreeQ[#]&],y] %Y A378084 Disjoint from A377783 (union A378040), first-differences A377784. %Y A378084 Appearing once: A378082. %Y A378084 Appearing twice: A378083. %Y A378084 A000040 lists the primes, differences A001223, seconds A036263. %Y A378084 A005117 lists the squarefree numbers. %Y A378084 A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593. %Y A378084 A061398 counts squarefree numbers between primes (sums A337030), zeros A068360. %Y A378084 A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361. %Y A378084 A070321 gives the greatest squarefree number up to n. %Y A378084 A112925 gives least squarefree number > prime(n), differences A378038. %Y A378084 A112926 gives greatest squarefree number < prime(n), differences A378037. %Y A378084 A120327 (union A162966) gives least nonsquarefree number >= n, differences A378039. %Y A378084 A377046 encodes k-differences of nonsquarefree numbers, zeros A377050. %Y A378084 Cf. A053797, A053806, A072284, A224363, A377430, A377431, A378032, A378033. %K A378084 nonn %O A378084 1,1 %A A378084 _Gus Wiseman_, Nov 23 2024