This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378086 #10 Dec 05 2024 12:06:50 %S A378086 0,0,1,1,3,4,5,6,7,11,11,13,14,14,16,20,22,23,25,26,27,29,31,33,36,39, %T A378086 39,40,41,42,49,50,53,53,57,58,61,63,64,68,70,71,74,75,76,77,81,84,86, %U A378086 87,88,90,91,97,99,101,103,104,107,109,109,113,119,120,121 %N A378086 Number of nonsquarefree numbers < prime(n). %F A378086 a(n) = A057627(prime(n)). %e A378086 The nonsquarefree numbers counted under each term begin: %e A378086 n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9: n=10: n=11: n=12: %e A378086 -------------------------------------------------------------- %e A378086 . . 4 4 9 12 16 18 20 28 28 36 %e A378086 8 9 12 16 18 27 27 32 %e A378086 4 8 9 12 16 25 25 28 %e A378086 4 8 9 12 24 24 27 %e A378086 4 8 9 20 20 25 %e A378086 4 8 18 18 24 %e A378086 4 16 16 20 %e A378086 12 12 18 %e A378086 9 9 16 %e A378086 8 8 12 %e A378086 4 4 9 %e A378086 8 %e A378086 4 %t A378086 Table[Length[Select[Range[Prime[n]],!SquareFreeQ[#]&]],{n,100}] %o A378086 (Python) %o A378086 from math import isqrt %o A378086 from sympy import prime, mobius %o A378086 def A378086(n): return (p:=prime(n))-sum(mobius(k)*(p//k**2) for k in range(1,isqrt(p)+1)) # _Chai Wah Wu_, Dec 05 2024 %Y A378086 For nonprime numbers we have A014689. %Y A378086 Restriction of A057627 to the primes. %Y A378086 First-differences are A061399 (zeros A068361), squarefree A061398 (zeros A068360). %Y A378086 For composite instead of squarefree we have A065890. %Y A378086 For squarefree we have A071403, differences A373198. %Y A378086 Greatest is A378032 (differences A378034), restriction of A378033 (differences A378036). %Y A378086 A000040 lists the primes, differences A001223, seconds A036263. %Y A378086 A005117 lists the squarefree numbers. %Y A378086 A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593. %Y A378086 A070321 gives the greatest squarefree number up to n. %Y A378086 A112925 gives the greatest squarefree number between primes, differences A378038. %Y A378086 A112926 gives the least squarefree number between primes, differences A378037. %Y A378086 A120327 gives the least nonsquarefree number >= n, first-differences A378039. %Y A378086 A377783 gives the least nonsquarefree > prime(n), differences A377784. %Y A378086 Cf. A013928, A046933, A053797, A053806, A072284, A076259, A224363, A337030, A377049, A378040, A378082, A378084. %K A378086 nonn %O A378086 1,5 %A A378086 _Gus Wiseman_, Dec 04 2024