cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378093 E.g.f. satisfies A(x) = exp( x * (1-x)^2 * A(x)^3 ) / (1-x).

This page as a plain text file.
%I A378093 #11 Feb 16 2025 08:34:07
%S A378093 1,2,13,187,4421,145381,6106885,312010217,18775791529,1300609323577,
%T A378093 101932831136801,8917429459192717,861423205666601869,
%U A378093 91071085791088039781,10459294205668851438589,1296711971347861868098561,172604468588739615868724945,24551969347625035312300681969
%N A378093 E.g.f. satisfies A(x) = exp( x * (1-x)^2 * A(x)^3 ) / (1-x).
%H A378093 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A378093 E.g.f.: exp( -LambertW(-3*x/(1-x))/3 )/(1-x).
%F A378093 a(n) = n! * Sum_{k=0..n} (3*k+1)^(k-1) * binomial(n,k)/k!.
%o A378093 (PARI) a(n) = n!*sum(k=0, n, (3*k+1)^(k-1)*binomial(n, k)/k!);
%Y A378093 Cf. A352410, A378092.
%Y A378093 Cf. A363478.
%K A378093 nonn
%O A378093 0,2
%A A378093 _Seiichi Manyama_, Nov 16 2024