A378627 Products of 6 distinct primes that are sandwiched between semiprime numbers.
39270, 66990, 71610, 79170, 82110, 99330, 110670, 122430, 123690, 125970, 129030, 132090, 136290, 144690, 152490, 163590, 166530, 167790, 180642, 182910, 190190, 191730, 215670, 220110, 222222, 226590, 227766, 231990, 235410, 239190, 247170, 248710, 249690, 254562, 258258, 260130
Offset: 1
Keywords
Examples
39270 is a term because 39270=2*3*5*7*11*17 is the product of six distinct primes, 39269=107*367 and 39271=173*227 are both semiprimes. 66990 is a term because 66990=2*3*5*7*11*29 is the product of six distinct primes, 66989=13*5153 and 66991=31*2161 are both semiprimes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(priqueue): children:= proc(t) local R,i,pp; R:= NULL: pp:= nextprime(t[6]); for i from 6 to 2 by -1 do R:= R, [t[1]*pp/t[i], op(t[2..i-1]),op(t[i+1..6]),pp]; if t[i-1] <> prevprime(t[i]) then break fi; od; {R} end proc: Res:= NULL: count:= 0: initialize(pq): insert([-2*mul(ithprime(i),i=2..6),3,5,7,11,13],pq); while count < 100 do t:= extract(pq); if numtheory:-bigomega(-t[1]-1) = 2 and numtheory:-bigomega(-t[1]+1) = 2 then Res:= Res, -t[1]; count:= count+1; fi; for tt in children(t) do insert(tt,pq) od: od: Res; # Robert Israel, Feb 03 2025
-
Mathematica
SequencePosition[Array[FactorInteger[#][[;; , 2]] &, 270000] /. {2} -> {1, 1}, {{1, 1}, {1, 1, 1, 1, 1, 1}, {1, 1}}][[;; , 1]] + 1 (* Amiram Eldar, Dec 02 2024 *)
Extensions
Edited by Robert Israel, Feb 03 2025
Comments