cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378627 Products of 6 distinct primes that are sandwiched between semiprime numbers.

Original entry on oeis.org

39270, 66990, 71610, 79170, 82110, 99330, 110670, 122430, 123690, 125970, 129030, 132090, 136290, 144690, 152490, 163590, 166530, 167790, 180642, 182910, 190190, 191730, 215670, 220110, 222222, 226590, 227766, 231990, 235410, 239190, 247170, 248710, 249690, 254562, 258258, 260130
Offset: 1

Views

Author

Massimo Kofler, Dec 02 2024

Keywords

Comments

All terms are even.
Not all terms are divisible by 6: the first that is not is a(21) = 190190. The first term that is deficient is a(1966) = 4739702. - Robert Israel, Feb 03 2025

Examples

			39270 is a term because 39270=2*3*5*7*11*17 is the product of six distinct primes, 39269=107*367 and 39271=173*227 are both semiprimes.
66990 is a term because 66990=2*3*5*7*11*29 is the product of six distinct primes, 66989=13*5153 and 66991=31*2161 are both semiprimes.
		

Crossrefs

Intersection of A067885 and A124936.

Programs

  • Maple
    with(priqueue):
    children:= proc(t) local R,i,pp;
       R:= NULL:
       pp:= nextprime(t[6]);
       for i from 6 to 2 by -1 do
         R:= R, [t[1]*pp/t[i], op(t[2..i-1]),op(t[i+1..6]),pp];
         if t[i-1] <> prevprime(t[i]) then break fi;
       od;
       {R}
    end proc:
    Res:= NULL: count:= 0:
    initialize(pq):
    insert([-2*mul(ithprime(i),i=2..6),3,5,7,11,13],pq);
    while count < 100 do
      t:= extract(pq);
      if numtheory:-bigomega(-t[1]-1) = 2 and numtheory:-bigomega(-t[1]+1) = 2 then
        Res:= Res, -t[1]; count:= count+1;
      fi;
      for tt in children(t) do insert(tt,pq) od:
    od:
    Res; # Robert Israel, Feb 03 2025
  • Mathematica
    SequencePosition[Array[FactorInteger[#][[;; , 2]] &, 270000] /. {2} -> {1, 1}, {{1, 1}, {1, 1, 1, 1, 1, 1}, {1, 1}}][[;; , 1]] + 1 (* Amiram Eldar, Dec 02 2024 *)

Extensions

Edited by Robert Israel, Feb 03 2025

A379167 Table read by row, where T(n,k), n>0 and k>0, represents the smallest n-digit number that is the product of k distinct primes and is sandwiched between semiprime numbers, or -1 if no such number exists.

Original entry on oeis.org

5, -1, 34, -1, 122, 186, 870, -1, 1042, 1146, 1190, 5610, -1, 10118, 10002, 10030, 10230, 39270, -1, 100462, 100158, 100030, 100122, 110670, 881790, -1, 1000478, 1000022, 1000010, 1000758, 1001130, 1009470, -1, 10000202, 10000258, 10000002, 10000218, 10001670, 10010910, 15825810
Offset: 1

Views

Author

Jean-Marc Rebert, Dec 17 2024

Keywords

Examples

			Smallest n-digit numbers m product of k distinct primes sandwiched between two semiprimes m-1 and m+1:
  n k    m-1,           m,               m+1
  1 1   4 = 2^2,      5 = 5,            6 = 2 * 3;
  2 2  33 = 3 * 11,  34 = 2 * 17,      35 = 5 * 7;
  3 3 185 = 5 * 37, 186 = 2 * 3 * 31, 187 = 11 * 17;
Table read by rows:
   5;
  -1,       34;
  -1,      122,      186,      870;
  -1,     1042,     1146,     1190,     5610;
  -1,    10118,    10002,    10030,    10230,    39270;
  -1,   100462,   100158,   100030,   100122,   110670,   881790;
  -1,  1000478,  1000022,  1000010,  1000758,  1001130,  1009470;
  -1, 10000202, 10000258, 10000002, 10000218, 10001670, 10010910, 15825810;
  ...
		

Crossrefs

Showing 1-2 of 2 results.