cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378100 Number of involutions in the symmetric group S_n with at least one fixed point.

This page as a plain text file.
%I A378100 #25 Jan 28 2025 08:36:22
%S A378100 0,1,1,4,7,26,61,232,659,2620,8551,35696,129757,568504,2255345,
%T A378100 10349536,44179711,211799312,962854399,4809701440,23103935021,
%U A378100 119952692896,605135328337,3257843882624,17175956434375,95680443760576,525079354619951,3020676745975552
%N A378100 Number of involutions in the symmetric group S_n with at least one fixed point.
%C A378100 In other words, a(n) is the number of involutions in S_n that are not derangements.
%F A378100 a(n) = Sum_{k=0..floor(n/2)} n! / ((n-2k)! * 2^k * k!) - (n! / (2^(n/2) * (n/2)!) * (1 - (n mod 2))).
%F A378100 a(n) = A000085(n) - A123023(n).
%F A378100 a(n) = A000085(n) for odd n.
%F A378100 From _Alois P. Heinz_, Nov 24 2024: (Start)
%F A378100 E.g.f.: exp(x*(2+x)/2)-exp(x^2/2).
%F A378100 a(n) = Sum_{k=1..n} A099174(n,k). (End)
%e A378100 a(4) = 7: (1,2)(3)(4), (1,3)(2)(4), (1,4)(2)(3), (1)(2,3)(4), (1)(2,4)(3), (1)(2)(3,4), (1)(2)(3)(4).
%p A378100 a := proc(n)
%p A378100     local k, total, deranged;
%p A378100     total := add(factorial(n)/(factorial(n-2*k)*2^k*factorial(k)), k=0..floor(n/2));
%p A378100     if mod(n, 2) = 0 then
%p A378100         deranged := factorial(n)/(2^(n/2)*factorial(n/2));
%p A378100     else
%p A378100         deranged := 0;
%p A378100     end if;
%p A378100     return total - deranged;
%p A378100 end proc:
%p A378100 seq(a(n), n=1..20);
%p A378100 # second Maple program:
%p A378100 a:= proc(n) option remember; `if`(n<4, [0, 1$2, 4][n+1],
%p A378100       a(n-1)+(2*n-3)*a(n-2)-(n-2)*(a(n-3)+(n-3)*a(n-4)))
%p A378100     end:
%p A378100 seq(a(n), n=0..27);  # _Alois P. Heinz_, Nov 24 2024
%t A378100 a[n_] := Module[{total, deranged},
%t A378100   total = Sum[n! / ((n - 2 k)! * 2^k * k!), {k, 0, Floor[n/2]}];
%t A378100   deranged = If[EvenQ[n], n! / (2^(n/2) * (n/2)!), 0];
%t A378100   total - deranged
%t A378100 ];
%t A378100 Table[a[n], {n, 1, 20}]
%o A378100 (Python)
%o A378100 from math import factorial
%o A378100 def a(n):
%o A378100     total = sum(factorial(n) // (factorial(n - 2 * k) * 2**k * factorial(k))
%o A378100                 for k in range(n // 2 + 1))
%o A378100     deranged = factorial(n) // (2**(n // 2) * factorial(n // 2)) if n % 2 == 0 else 0
%o A378100     return total - deranged
%o A378100 print([a(n) for n in range(1, 21)])
%o A378100 (PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(x+x^2/2)-exp(x^2/2))) \\ _Joerg Arndt_, Nov 27 2024
%Y A378100 Cf. A000085 (involutions), A000166 (derangements), A002467 (permutations with a fixed point), A099174, A123023 (involutions that are derangements).
%K A378100 nonn,easy
%O A378100 0,4
%A A378100 _Maniru Ibrahim_, Nov 16 2024