This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378112 #24 Nov 16 2024 19:30:34 %S A378112 1,1,1,1,1,0,1,1,1,0,1,1,2,2,0,1,1,3,9,5,0,1,1,4,23,55,14,0,1,1,5,46, %T A378112 265,400,42,0,1,1,6,80,880,3942,3266,132,0,1,1,7,127,2347,23695,70395, %U A378112 28999,429,0,1,1,8,189,5403,105554,824229,1445700,274537,1430,0 %N A378112 Number A(n,k) of k-tuples (p_1, p_2, ..., p_k) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_k only touches the x-axis at its endpoints; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A378112 Alois P. Heinz, <a href="/A378112/b378112.txt">Antidiagonals n = 0..115, flattened</a> %H A378112 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %F A378112 Column k is INVERTi transform of row k of A368025. %e A378112 A(3,2) = 9: %e A378112 /\ %e A378112 /\/\ / \ /\ /\/\ %e A378112 (/\/\/\,/ \) (/\/\/\,/ \) (/ \/\,/ \) %e A378112 . %e A378112 /\ /\ %e A378112 /\ / \ /\ /\/\ /\ / \ %e A378112 (/ \/\,/ \) (/\/ \,/ \) (/\/ \,/ \) %e A378112 . %e A378112 /\ /\ /\ %e A378112 /\/\ /\/\ /\/\ / \ / \ / \ %e A378112 (/ \,/ \) (/ \,/ \) (/ \,/ \) %e A378112 . %e A378112 Square array A(n,k) begins: %e A378112 1, 1, 1, 1, 1, 1, 1, ... %e A378112 1, 1, 1, 1, 1, 1, 1, ... %e A378112 0, 1, 2, 3, 4, 5, 6, ... %e A378112 0, 2, 9, 23, 46, 80, 127, ... %e A378112 0, 5, 55, 265, 880, 2347, 5403, ... %e A378112 0, 14, 400, 3942, 23695, 105554, 382508, ... %e A378112 0, 42, 3266, 70395, 824229, 6601728, 40446551, ... %p A378112 b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul( %p A378112 (2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k)) %p A378112 end: %p A378112 A:= proc(n, k) option remember; %p A378112 b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1) %p A378112 end: %p A378112 seq(seq(A(n, d-n), n=0..d), d=0..10); %Y A378112 Columns k=0-3 give: A019590(n+1), A120588, A355281, A378114. %Y A378112 Rows n=0+1,2,3 give: A000012, A001477, A101986. %Y A378112 Main diagonal gives A378113. %Y A378112 Cf. A000108, A078920, A123352, A368025. %K A378112 nonn,tabl %O A378112 0,13 %A A378112 _Alois P. Heinz_, Nov 16 2024