cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378130 Decimal expansion of 24*L^2/(5^(7/4)*Pi^2), where L is the lemniscate constant (A062539).

Original entry on oeis.org

9, 9, 9, 9, 9, 6, 3, 8, 3, 1, 5, 9, 0, 8, 4, 1, 2, 7, 7, 7, 2, 7, 6, 3, 4, 9, 9, 1, 8, 4, 7, 0, 6, 1, 1, 2, 8, 0, 8, 9, 4, 3, 4, 8, 8, 7, 7, 0, 3, 5, 9, 6, 6, 1, 3, 2, 9, 0, 9, 5, 9, 5, 0, 4, 9, 2, 6, 8, 1, 5, 2, 7, 3, 9, 9, 2, 1, 6, 4, 9, 2, 2, 9, 9, 3, 7, 4, 7, 9, 1
Offset: 0

Views

Author

Paolo Xausa, Nov 18 2024

Keywords

Examples

			0.999996383159084127772763499184706112808943488770...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[12*Pi/(5^(7/4)*Gamma[3/4]^4), 10, 100]] (* or *)
    First[RealDigits[Sum[((-1)^k/6635520^k)*(4*k)!/k!^4, {k, 0, Infinity}], 10, 100]] (* or *)
    First[RealDigits[HypergeometricPFQ[{1/4, 1/2, 3/4}, {1, 1}, -1/25920], 10, 100]]

Formula

Equals 12*Pi/(5^(7/4)*Gamma(3/4)^4) = 12*A091670/5^(7/4).
Equals Sum_{k >= 0} ((-1)^k/6635520^k)*(4*k)!/(k!)^4 = Sum_{k >= 0} ((-1)^k/6635520^k)*A008977(k).
Equals pFq(1/4, 1/2, 3/4; 1, 1; -1/25920), where pFq is the generalized hypergeometric function.