cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378133 Irregular triangle T(n,k) = P(n)*2^k, n >= 0, k = 0..floor(log_2 prime(k+1)), where P = A002110.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 60, 120, 210, 420, 840, 1680, 2310, 4620, 9240, 18480, 30030, 60060, 120120, 240240, 480480, 510510, 1021020, 2042040, 4084080, 8168160, 9699690, 19399380, 38798760, 77597520, 155195040, 223092870, 446185740, 892371480, 1784742960, 3569485920
Offset: 0

Views

Author

Michael De Vlieger, Nov 17 2024

Keywords

Comments

Subset of A060735.
a(n) = min(2*a(n-1), f(a(n-1))), where f(k) is the smallest primorial (A002110) greater than k, for n > 0. - Hal M. Switkay, Mar 19 2025

Examples

			Rows n = 0..9:
n\k |         0          1          2           3           4
-------------------------------------------------------------
  0 |         1          .          .           .           .
  1 |         2          4          .           .           .
  2 |         6         12         24           .           .
  3 |        30         60        120           .           .
  4 |       210        420        840        1680           .
  5 |      2310       4620       9240       18480           .
  6 |     30030      60060     120120      240240      480480
  7 |    510510    1021020    2042040     4084080     8168160
  8 |   9699690   19399380   38798760    77597520   155195040
  9 | 223092870  446185740  892371480  1784742960  3569485920
		

Crossrefs

Programs

  • Mathematica
    nn = 16;
    MapIndexed[Set[P[First[#2] - 1], #1] &,
      FoldList[Times, 1, Prime@ Range[nn + 1] ] ];
    Union@ Flatten@
      Table[P[i]*2^Range[0, Floor[Log2[Prime[i + 1] ] ] ], {i, 0, nn}]

Formula

T(n,k) = A002110(n)*A000079(k), n >= 0, k = 0..A098388(k+1).
T(n,0) = A002110(n).
T(n,1) = A088860(n), n >= 1.
T(n,2) = A102476(n), n >= 2.
T(n,A098388(k+1)) = A378144(n).
Let S(n,j) = A002110(n)*j, n >= 0, j = 0..A006093(n+1) = P(n)*j, n >= 0, j = 0..prime(n+1)-1. Then T(n,k) = S(n, 2^k).