cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378144 a(n) = P(n) * 2^floor(log_2(prime(n+1))) = A002110(n) * A000079(A098388(n+1)).

This page as a plain text file.
%I A378144 #11 Nov 20 2024 06:46:39
%S A378144 1,4,24,120,1680,18480,480480,8168160,155195040,3569485920,
%T A378144 103515091680,6417935684160,237463620313920,9736008432870720,
%U A378144 418648362613440960,19676473042831725120,1042853071270081431360,61528331204934804450240,7506456407002046142929280,502932579269137091576261760
%N A378144 a(n) = P(n) * 2^floor(log_2(prime(n+1))) = A002110(n) * A000079(A098388(n+1)).
%C A378144 Last term in row n of A378133.
%C A378144 a(n) is the largest product of a power of 2 and A002110(n) less than A002110(n+1).
%H A378144 Michael De Vlieger, <a href="/A378144/b378144.txt">Table of n, a(n) for n = 0..349</a>
%F A378144 a(n) = A002110(n)*A000079(A098388(n+1)).
%t A378144 {1}~Join~Table[Product[Prime[i], {i, n}]*2^Floor[Log2[Prime[n + 1]]], {n, 120}]
%o A378144 (Python)
%o A378144 from sympy import primorial, prime
%o A378144 def A378144(n): return primorial(n)<<prime(n+1).bit_length()-1 if n else 1 # _Chai Wah Wu_, Nov 19 2024
%Y A378144 Cf. A000079, A002110, A060735, A098388, A378133.
%K A378144 nonn,easy
%O A378144 0,2
%A A378144 _Michael De Vlieger_, Nov 17 2024