This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378145 #11 Dec 08 2024 17:12:07 %S A378145 1,1,1,1,2,1,2,4,3,1,5,10,8,4,1,14,28,23,13,5,1,42,84,70,42,19,6,1, %T A378145 132,264,222,138,68,26,7,1,429,858,726,462,240,102,34,8,1,1430,2860, %U A378145 2431,1573,847,385,145,43,9,1,4862,9724,8294,5434,3003,1430,583,198,53,10,1 %N A378145 Riordan triangle (1 + x * C(x), x * C(x)), where C(x) is g.f. of A000108. %F A378145 T(n, k) = binomial(2*n-k, n) * (n*(3*k+1) - 2*k*(k+1)) / ((2*n-k) * (2*n-k-1)) if 0 <= k < n and 1 if k = n. %F A378145 T(n, k) = T(n, k-1) - T(n-1, k-2) for 2 <= k <= n. %F A378145 (-1)^(n-k) * T(n, k) is matrix inverse of A004070 (seen as a triangle). %F A378145 Conjecture: Sum_{i=0..n-k} binomial(i+m-1, i) * T(n, i+k) = T(n+m, m+k) for m > 0. %F A378145 Conjecture: Sum_{k=0..n} (1 + floor(k/2)) * T(n, k) = A000108(n+1). %F A378145 G.f.: A(x, y) = (1 + x*C(x)) / (1 - y * x*C(x)), where C(x) is g.f. of A000108. %e A378145 Triangle T(n, k) for 0 <= k <= n starts: %e A378145 n\k : 0 1 2 3 4 5 6 7 8 9 %e A378145 ====================================================== %e A378145 0 : 1 %e A378145 1 : 1 1 %e A378145 2 : 1 2 1 %e A378145 3 : 2 4 3 1 %e A378145 4 : 5 10 8 4 1 %e A378145 5 : 14 28 23 13 5 1 %e A378145 6 : 42 84 70 42 19 6 1 %e A378145 7 : 132 264 222 138 68 26 7 1 %e A378145 8 : 429 858 726 462 240 102 34 8 1 %e A378145 9 : 1430 2860 2431 1573 847 385 145 43 9 1 %e A378145 etc. %o A378145 (PARI) T(n,k)=if(k==n,1,binomial(2*n-k,n)*(n*(3*k+1)-2*k*(k+1))/((2*n-k)*(2*n-k-1))) %Y A378145 Cf. A000108, A004070, A120588 (column 0), A068875 (column 1 and row sums), A000007 (alt. row sums). %K A378145 nonn,easy,tabl %O A378145 0,5 %A A378145 _Werner Schulte_, Nov 17 2024