cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378146 Primes p such that 16*p^4 + 1 is prime.

This page as a plain text file.
%I A378146 #10 Dec 03 2024 12:43:49
%S A378146 2,3,17,23,37,41,53,59,71,97,127,139,167,233,263,277,283,379,389,457,
%T A378146 521,563,571,601,619,661,691,743,797,809,811,823,853,859,877,967,971,
%U A378146 997,1051,1063,1103,1187,1277,1289,1321,1367,1399,1433,1451,1499
%N A378146 Primes p such that 16*p^4 + 1 is prime.
%F A378146 a(n) >> n log^2 n. - _Charles R Greathouse IV_, Nov 17 2024
%t A378146 Select[Prime[Range[250]], PrimeQ[16*#^4 + 1] &] (* _Amiram Eldar_, Nov 17 2024 *)
%o A378146 (Magma) [p: p in PrimesUpTo(1500) | IsPrime(16*p^4+1)];
%o A378146 (PARI) list(lim)=my(v=List()); forprime(p=2,lim, if(isprime(16*p^4+1), listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Nov 17 2024
%Y A378146 Primes p such that (2*p)^(2^k) + 1 is prime: A005384 (k = 0), A052291 (k = 1), this sequence (k = 2).
%Y A378146 Cf. A378134, A378143.
%K A378146 nonn
%O A378146 1,1
%A A378146 _Juri-Stepan Gerasimov_, Nov 17 2024