cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378150 a(n) is the number of distinct integer-sided isosceles trapezoids with exactly one pair of parallel sides and area n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 2, 1, 0, 0, 3, 0, 0, 1, 2, 1, 2, 0, 1, 1, 1, 0, 5, 0, 0, 2, 1, 0, 2, 0, 3, 1, 0, 0, 4, 1, 0, 1, 2
Offset: 1

Views

Author

Felix Huber, Dec 02 2024

Keywords

Comments

Integer-sided isosceles trapezoids with integer area have an integer height. Proof: In an isosceles trapezoid with integer sides and parallel sides p, q with p = q + 2*x, the denominator of x must not be greater than 2. Let us consider the right-angled triangle x, h, d: Assuming that h is not an integer, then x cannot be an integer either, since x = sqrt(d^2 - h^2). Therefore x = (2*s - 1)/2 where s is a positive integer. Since h = 2*n/(p + q) is rational and h = sqrt(d^2 - x^2), it follows that h = (2*t - 1)/2 where t is a positive integer and d^2 = s^2 - s + t^2 - t + 1/2. d is therefore not an integer. It follows that isosceles trapezoids with integer sides and area also have an integer height.

Examples

			a(54) = 2 because there are 2 distinct integer-sided isosceles trapezoids [p, d, q, d, h] (p and q are parallel, height h) with area 54: [17, 10, 1, 10, 6], [22, 5, 14, 5, 3].
See also linked Maple program "Integer-sided isosceles trapezoids with area n".
		

Crossrefs

Programs

  • Maple
    A378150:=proc(n)
       local a,m,q,M;
       a:=0;
       M:=NumberTheory:-Divisors(n) minus {1};
       for m in M do
          for q from 1 to m-3 do
             if issqr(((m-q))^2+(n/m)^2) then
                a:=a+1;
             fi
          od
       od;
       return a
    end proc;
    seq(A378150(n),n=1..88);

Formula

a(p) = 0 for prime p.