A378154 Array read by rows: T(n,k) for k <= min(n,10) is the number of digital types of length n with exactly k distinct decimal digits without common prime factors of a different digital type.
1, 1, 1, 0, 3, 1, 0, 4, 6, 1, 0, 15, 25, 10, 1, 0, 12, 84, 65, 15, 1, 0, 63, 301, 350, 140, 21, 1, 0, 80, 868, 1672, 1050, 266, 28, 1, 0, 171, 2745, 7770, 6951, 2646, 462, 36, 1, 0, 370, 8680, 33505, 42405, 22827, 5880, 750, 45, 0, 0, 1023, 28501, 145750, 246730, 179487, 63987, 11880, 1155, 55
Offset: 1
Examples
T(n,k) as a table (omitting terms with k > n): --------------------------------------------------------------------------------------------- k: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10; | Total, n | | A376918(n) --------------------------------------------------------------------------------------------- 1 | 1; | 1 2 | 1, 1; | 2 3 | 0, 3, 1; | 4 4 | 0, 4, 6, 1; | 11 5 | 0, 15, 25, 10, 1; | 51 6 | 0, 12, 84, 65, 15, 1; | 177 7 | 0, 63, 301, 350, 140, 21, 1; | 876 8 | 0, 80, 868, 1672, 1050, 266, 28, 1; | 3965 9 | 0, 171, 2745, 7770, 6951, 2646, 462, 36, 1; | 20782 10 | 0, 370, 8680, 33505, 42405, 22827, 5880, 750, 45, 0; | 114462 11 | 0, 1023, 28501, 145750, 246730, 179487, 63987, 11880, 1155, 55; | 678568 12 | 0, 912, 69792, 583438, 1373478, 1322896, 627396, 159027, 22275, 1705; | 4160919 13 | 0, 3965, 261495, 2532517, 7508501, 9321312, 5715424, 1899612, 359502, 38610; | 27640938 ... (for more terms, see the A-file). The pattern "ABCA" is counted toward T(4,3) because ABCA = A*1001 + B*100 + C*10. Since GCD(1001,100,10) = 1, integers of the digital type "ABCA" (1021 in A266946) share no common prime factors. The pattern "AA" is counted toward T(2,1) because AA = A*11, and 11 is a prime repunit. The only common prime factor shared by the repdigits "AA" is 11, which is of the same digital type as the original pattern. Since no other patterns with n=2 and k=1 exist, T(2,1)=1. The pattern "ABAB" is not counted toward T(4,2) because it is divisible by 101 for any A > 0 and B >= 0, and 101 has a different digital type from ABAB. Indeed, ABAB = A*1010+B*101, which is identically divisible by 101. Since there are two more patterns "ABBA" and "AABB" that are excluded due to divisibility by 11, T(4,1) = S2(4,2) - 3 = 4. The pattern "ABCDEFGHIJ" that contains all possible digits exactly once does not contribute to T(10,10) because its sum of digits is 1+2+...+9 = 45, which is divisible by 9. Therefore, all integers with the digital type "ABCDEFGHIJ" share the common prime factor 3. Since no other patterns with n=k=10 exist, T(10,10)=0. The pattern "ABCBDEFBGHIBJ" is not counted toward T(13,10) because its sum of digits is 3*B+45, which is divisible by 3. In total there are binomial(13,4) = 715 patterns of length 13 with all 10 distinct digits in which any 4 digits are equal, and since A378761(13,10) = 0, we obtain T(13,10) = S2(13,10) - 715.
Links
- Dmytro Inosov, Table of n, a(n) for n = 1..149
- Dmytro Inosov, Table of T(n,k), with missing terms
- Dmytro S. Inosov and Emil Vlasák, Cryptarithmically unique terms in integer sequences, arXiv:2410.21427 [math.NT], 2024.
- Math Stackexchange, A general formula for a tricky combinatorics problem
Programs
-
Mathematica
MinLength = 1; MaxLength = 10; (* the range of n to calculate T(n,k) for *) (* Function that calculates the canonical form A358497(n) *) A358497[k_] := FromDigits@a358497C[k] a358497C = Compile[{{k, _Integer}}, Module[{firstpos = ConstantArray[0, 10], digits = IntegerDigits[k], indx = 0}, Table[If[firstpos[[digits[[j]] + 1]] == 0, firstpos[[digits[[j]] + 1]] = Mod[++indx, 10]]; firstpos[[digits[[j]] + 1]], {j, Length[digits]}]]]; (* Function that checks if a common prime factor of a different digital type exists *) DivisibilityRulesQ[pat_] := ( If[Divisible[Length[pat], 10] && Length[Counts[pat]] == 10 && AllTrue[Table[Counts[pat][[i]] == Length[pat]/10, {i, 1, 10}], TrueQ], Return[True]]; (# != 1) && AnyTrue[Extract[# // FactorInteger, {All, 1}], A358497[#] != A358497[pat // FromDigits] &] &[ Apply[GCD, Total[10^(Position[Reverse[pat], #]-1) // Flatten]& /@ Mod[Range[CountDistinct[pat]], 10]]]); (* Function that generates all patterns that do not satisfy divisibility rules *) Patterns[len_, k_] := ( Clear[dfs]; ResultingPatterns = {}; dfs[number_List] := If[Length[number] == len, If[Length[Union[If[# < 10, #, 0] & /@ number]] == k, AppendTo[ResultingPatterns, If[# < 10, #, 0] & /@ number]], Do[If[i <= 10, dfs[Append[number, i]]], {i, Range[1, Last[Union[number]] + 1]}]]; dfs[{1}]; FromDigits /@ Select[ResultingPatterns, ! DivisibilityRulesQ[#] &]); (* Counting the patterns T(n, k) and their sum, A376918(n) *) Do[Print[{n, #, Sum[#[[m]], {m, 1, Length[#]}]}] &[Table[Length[Patterns[n, j]], {j, 1, Min[10, n]}]], {n, MinLength, MaxLength}];
Formula
Sum_{k=1..min(n,10)} T(n,k) = A376918(n) (row sums).
T(n+1,n) = A000217(n) for n <= 10.
T(n,2) = 2^(n-1) - A378511(n) for n > 1.
T(n,k) <= S2(n,k) -- k'th column of A008277.
T(n,k) = S2(n,k) - A378761(n,k) for 2 <= k <= 9.
T(n,k) = S2(n,k) for n/2 < k <= 9.
T(n,10) = S2(n,10) for n = 11, 12, 14, 15, 17, 18 -- the only integers >= 10 for which no representation n = 10m + 3q with m >= 1 and q >= 0 exists and A378761(n,10)=0.
T(13,10) = S2(13,10) - binomial(13,4).
T(16,10) = S2(16,10) - binomial(16,7) - binomial(16,4)*binomial(12,4)/2.
T(19,10) = S2(19,10) - binomial(19,10) - binomial(19,7)*binomial(12,4) - binomial(19,4)*binomial(15,4)*binomial(11,4)/6.
T(23,10) = S2(23,10) - binomial(23,5)*Product_{i=1..8}(2n+1) -- since A378761(23,10)=0.
Comments