This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378164 #9 Nov 27 2024 17:56:59 %S A378164 1,81,1296,2187,1419857 %N A378164 Smaller of consecutive terms b < c of A076467 such that the quality q=log(rad(c))/log(rad((c-b)*b*c)) of the abc-triple c-b,b,c with gcd(c-b,b,c)=1 sets a new record. %C A378164 If it exists, a(6)>5*10^27. %H A378164 Wikipedia, <a href="https://en.wikipedia.org/wiki/Abc_conjecture">abc conjecture</a> %e A378164 Pairs b,c of consecutive %e A378164 terms of A076467 %e A378164 A378165 %e A378164 c-b b c Quality = log(rad(c))/log(rad((c-b)*b*c)) %e A378164 7, 1, 8, 0.262649535... %e A378164 44, 81, 125, 0.277532712... %e A378164 35, 1296, 1331, 0.309605475... %e A378164 10, 2187, 2197, 0.429917243... %e A378164 23040, 1419857, 1442897, 0.431260235... %o A378164 (PARI) \\ Uses _M. F. Hasler_'s A076467_vec from A076467 %o A378164 a378164_5(upto) = {my(W=A076467_vec(upto), qw=0); for(k=2, #W, my(d=W[k]-W[k-1]); if(gcd([d,W[k],W[k-1]])==1, my(C=factor(W[k])[,1], B=factor(W[k-1])[,1], A=factor(d)[,1], P=vecprod(setunion(setunion(Set(B),Set(C)),Set(A))), q=log(vecprod(C))/log(P)); if(q>qw, print([d,W[k-1],W[k],q]); qw=q)))}; %o A378164 a378164_5(10^16) %Y A378164 A378165 gives the corresponding values of c-b. %Y A378164 Cf. A007947 (rad), A076467, A377933, A377934, A378166, A378167. %K A378164 nonn,hard,more %O A378164 1,2 %A A378164 _Hugo Pfoertner_, Nov 18 2024