This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378170 #9 Nov 19 2024 00:53:04 %S A378170 1,2,3,5,7,8,11,13,19,34,45,72,113,171,262,388,638,1128,1928,3370, %T A378170 5584,9691,17129,30493,54785,94510,169817,308491,559176,1019487, %U A378170 1816043,3333698,6153695,11384025,21100254,38262081,71096456,132675454,247900732,463959984 %N A378170 Number of subsets of the first n nonzero tetrahedral numbers whose sum is a nonzero tetrahedral number. %H A378170 Michael S. Branicky, <a href="/A378170/b378170.txt">Table of n, a(n) for n = 1..103</a> %e A378170 a(8) = 13 subsets: {1}, {4}, {10}, {20}, {35}, {56}, {84}, {120}, {1, 20, 35}, {1, 35, 84}, {10, 35, 120}, {1, 4, 10, 20} and {1, 4, 20, 56, 84}. %o A378170 (Python) %o A378170 from sympy import integer_nthroot %o A378170 def is_tetra(n): return (c:=integer_nthroot(6*n, 3)[0])*(c+1)*(c+2) == 6*n %o A378170 from functools import cache %o A378170 @cache %o A378170 def b(n, s): %o A378170 if n == 0: %o A378170 if s > 0 and is_tetra(s): return 1 %o A378170 return 0 %o A378170 return b(n-1, s) + b(n-1, s+n*(n+1)*(n+2)//6) %o A378170 a = lambda n: b(n, 0) %o A378170 print([a(n) for n in range(1, 30)]) # _Michael S. Branicky_, Nov 18 2024 %Y A378170 Cf. A000292, A377123, A378171. %K A378170 nonn %O A378170 1,2 %A A378170 _Ilya Gutkovskiy_, Nov 18 2024 %E A378170 a(24) and beyond from _Michael S. Branicky_, Nov 18 2024