This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378175 #28 Nov 20 2024 05:23:22 %S A378175 1,3,5,7,9,11,13,15,17,19,21,27,23,25,29,33,31,35,37,39,45,41,43,51, %T A378175 47,55,49,53,57,63,81,59,61,65,69,75,67,71,77,87,99,73,85,79,93,83,89, %U A378175 91,95,105,111,117,135,97,121,101,123,103,115,125,107,119,129,153 %N A378175 Triangle T(n,k) read by rows in which n-th row lists in increasing order all multiplicative partitions mu of n (with factors > 1) encoded as Product_{j in mu} prime(j); n>=1, 1<=k<=A001055(n). %H A378175 Alois P. Heinz, <a href="/A378175/b378175.txt">Rows n = 1..2047, flattened</a> %F A378175 T(prime(n),1) = T(A000040(n),1) = A006450(n). %e A378175 The multiplicative partitions of n=8 are {[8], [4,2], [2,2,2]}, encodings give {prime(8), prime(4)*prime(2), prime(2)^3} = {19, 7*3, 3^3} => row 8 = [19, 21, 27]. %e A378175 For n=1 the empty partition [] gives the empty product 1. %e A378175 Triangle T(n,k) begins: %e A378175 1 ; %e A378175 3 ; %e A378175 5 ; %e A378175 7, 9 ; %e A378175 11 ; %e A378175 13, 15 ; %e A378175 17 ; %e A378175 19, 21, 27 ; %e A378175 23, 25 ; %e A378175 29, 33 ; %e A378175 31 ; %e A378175 35, 37, 39, 45 ; %e A378175 41 ; %e A378175 43, 51 ; %e A378175 47, 55 ; %e A378175 49, 53, 57, 63, 81 ; %e A378175 59 ; %e A378175 ... %p A378175 b:= proc(n) option remember; `if`(n=1, {1}, {seq(map(x-> x* %p A378175 ithprime(d), b(n/d))[], d=numtheory[divisors](n) minus {1})}) %p A378175 end: %p A378175 T:= n-> sort([b(n)[]])[]: %p A378175 seq(T(n), n=1..28); %Y A378175 Row sums give A378176. %Y A378175 Row lengths give A001055. %Y A378175 Column k=1 gives A318871. %Y A378175 Rightmost elements of rows give A064988. %Y A378175 Sorted terms give A005408. %Y A378175 Cf. A000040, A006450, A215366, A377852. %K A378175 nonn,tabf %O A378175 1,2 %A A378175 _Alois P. Heinz_, Nov 18 2024