cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A378182 Sum of row n of A378180.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 25, 1, 10, 9, 15, 1, 25, 1, 47, 11, 14, 1, 90, 6, 16, 13, 77, 1, 80, 1, 31, 15, 20, 13, 90, 1, 22, 17, 250, 1, 116, 1, 161, 58, 26, 1, 301, 8, 47, 21, 215, 1, 90, 17, 554, 23, 32, 1, 490, 1, 34, 90, 63, 19, 212, 1, 347, 27, 152
Offset: 1

Views

Author

Michael De Vlieger, Nov 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    Block[{k}, Table[k = PrimeOmega[n];
      Total@ Select[Range[n^PrimeNu[n]],
        Divisible[n, rad[#]] && PrimeOmega[#] < k &], {n, 60}]]

Formula

a(n) = A376567(n) - A377071(n).
For prime p, a(p) = 1.
For prime power p^k, a(p^k) = A244974(p^k)-p^k = A000203(p^k)-p^k.
a(2^k) = 2^k - 1.
For n in A024619, a(n) != A244974(n).

A378181 a(1) = 0, a(n) = binomial(bigomega(n) + omega(n) - 1, omega(n)), where bigomega = A001222 and omega = A001221.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 10, 2, 3, 3, 6, 1, 10, 1, 5, 3, 3, 3, 10, 1, 3, 3, 10, 1, 10, 1, 6, 6, 3, 1, 15, 2, 6, 3, 6, 1, 10, 3, 10, 3, 3, 1, 20, 1, 3, 6, 6, 3, 10, 1, 6, 3, 10, 1, 15, 1, 3, 6, 6, 3, 10, 1, 15, 4, 3, 1
Offset: 1

Views

Author

Michael De Vlieger, Nov 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    {0}~Join~Table[Binomial[PrimeOmega[n] + # - 1, #] &@ PrimeNu[n], {n, 120}]

Formula

a(n) = cardinality of { m : rad(m) | n, bigomega(m) < bigomega(n) }, i.e., row n of A378180.
For prime p, a(p) = A010846(p)-1 = A000005(p)-1 = 1.
For prime power p^k, a(p^k) = A010846(p^k)-1 = A000005(p^k)-1 = k.
For n in A024619, a(n) != A010846(n).

A378183 a(n) = rad(n)^binomial(omega(n) + bigomega(n) - 1, bigomega(n) - 2), where rad = A007947, bigomega = A001222, and omega = A001221.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 8, 3, 10, 1, 1296, 1, 14, 15, 64, 1, 1296, 1, 10000, 21, 22, 1, 60466176, 5, 26, 27, 38416, 1, 24300000, 1, 1024, 33, 34, 35, 60466176, 1, 38, 39, 10000000000, 1, 130691232, 1, 234256, 50625, 46, 1, 3656158440062976, 7, 10000, 51, 456976, 1
Offset: 1

Views

Author

Michael De Vlieger, Nov 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Apply[Times, #1]^Binomial[Length[#1] + Total[#2] - 1, Total[#2] - 2] & @@
      Transpose@ FactorInteger[n], {n, 120}]

Formula

a(n) = A377379(n)/A377073(n).
For prime p, a(p) = 1.
For prime power p^k, a(p^k) = A243103(p^k)/p^k = A007955(p^k)/p^k = p^(k*(k-1)).
For n in A024619, a(n) != A243103(n).
For squarefree semiprime n (in A006881), a(n) = n.
Showing 1-3 of 3 results.