This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378185 #10 Jan 13 2025 20:29:47 %S A378185 2,5,8,11,14,18,20,23,26,29,33,36,38,41,44,48,51,54,56,59,62,66,69,72, %T A378185 75,77,81,84,87,90,93,96,99,102,105,108,112,114,117,120,123,126,130, %U A378185 132,135,138,141,145,148,151,153,156,160,163,166,169,171,174,178 %N A378185 a(n) = n + floor(n*r/s) + floor(n*r/t), where r=2^(1/4), s=2^(1/2), t=2^(3/4). %C A378185 The sequences A378142, A328185, A379510, partition the positive integers (A000027), as proved at A184812: %C A378185 A378142: 3,6,10,13,17,21,24,28,32,35,... %C A378185 A328185: 2,5,8,11,14,18,20,23,26,29,,... %C A378185 A379510: 1,4,7,9,12,15,16,19,22,25,27,... %C A378185 For each k in A000027, write "a" if k=A378142(n) for some n, "b" if k=A328185(n) for some n, and "c" if k=A379510(n) for some n. Concatenating these letters for k = 1,2,3,... spells the following infinite word: %C A378185 cbacbacbcabcabccabcbacbacbcabcacbcabcbacbacbcacbacbcabcbacbcabcacbacbcabcabcbcacbacbacbcabcabccbacbacb... %F A378185 a(n) = n + [w*n] + [n/w], where w = 2^(1/4) and [ ] = floor. %t A378185 r=2^(1/4); s=2^(1/2); t=2^(3/4); %t A378185 a[n_]:=n+Floor[n*s/r]+Floor[n*t/r]; %t A378185 b[n_]:=n+Floor[n*r/s]+Floor[n*t/s]; %t A378185 c[n_]:=n+Floor[n*r/t]+Floor[n*s/t]; %t A378185 Table[a[n], {n, 1, 120}] (* A378142 *) %t A378185 Table[b[n], {n, 1, 120}] (* A378185 *) %t A378185 Table[c[n], {n, 1, 120}] (* A379510 *) %Y A378185 Cf. A000027, A184812, A378142, A379510. %K A378185 nonn %O A378185 1,1 %A A378185 _Clark Kimberling_, Jan 13 2025