This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378189 #7 Nov 21 2024 09:05:18 %S A378189 1,3,5,7,13,17,37,83,137,173,193,269,311,479,607,673,1019,1427,1523, %T A378189 1613,3391,3527,4817,5021,5623,9887,14891,15823,21701,22727,24439, %U A378189 26399,27581,28771,29339,35491,37967,49207,51157,52639,54799,64303,93077,104323,115279,116981,117881,135209,157177 %N A378189 Positions of records in A205561. %C A378189 Numbers m such that there is k such that for every m' < m, there exist j and k' such that 1 <= j < k' <= k and m' divides (2*k')! - (2*j)!, but there do not exist j and k' such that 1 <= j < k' <= k and m divides (2*k')! - (2*j)!. %H A378189 Robert Israel, <a href="/A378189/b378189.txt">Table of n, a(n) for n = 1..113</a> %p A378189 f:= proc(n) local S, j, x; %p A378189 S:= {}: %p A378189 x:= 1: %p A378189 for j from 1 do %p A378189 x:=x*2*j*(2*j-1) mod n; %p A378189 if member(x, S) then return j fi; %p A378189 S:= S union {x} %p A378189 od %p A378189 end proc: %p A378189 J:= 1: m:= 2: count:= 1: %p A378189 for k from 2 while count < 70 do %p A378189 v:= f(k); %p A378189 if v > m then J:= J, k; count:= count+1; m:= v; %p A378189 fi %p A378189 od: %p A378189 J; %Y A378189 Cf. A205561, A378188. %K A378189 nonn %O A378189 1,2 %A A378189 _Robert Israel_, Nov 19 2024