cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378193 Rectangular array read by descending antidiagonals: row n shows the integers m such that the number of Pythagorean primes (including multiplicities) that divide m is n-1.

Original entry on oeis.org

1, 2, 5, 3, 10, 25, 4, 13, 50, 125, 6, 15, 65, 250, 625, 7, 17, 75, 325, 1250, 3125, 8, 20, 85, 375, 1625, 6250, 15625, 9, 26, 100, 425, 1875, 8125, 31250, 78125, 11, 29, 130, 500, 2125, 9375, 40625, 156250, 390625, 12, 30, 145, 650, 2500, 10625, 46875, 203125, 781250, 1953125
Offset: 1

Views

Author

Clark Kimberling, Jan 14 2025

Keywords

Comments

Every positive integer occurs exactly once.

Examples

			Corner:
     1     2     3     4      6       7
     5    10    13    15     17      20
    25    50    65    75     85     100
   125   250   325   375    425     500
   625  1250  1625  1875   2125    2500
  3125  6250  8125  9375  10625   12500
		

Crossrefs

Programs

  • Maple
    A378193 := proc(n,k)
        option remember;
        local a;
        if k = 0 then
           0;
        else
            for a from procname(n,k-1)+1 do
                if A083025(a) = n-1 then
                    return a;
                end if;
            end do;
        end if;
    end proc:
    seq(seq( A378193(n,d-n),n=1..d-1),d=2..10) ;
  • Mathematica
    u = Map[Map[#[[1]] &, #] &, GatherBy[
        SortBy[Map[{#, 1 + Count[Map[IntegerQ[(# - 1)/4] && PrimeQ[#] &,
                 Flatten[Map[ConstantArray[#[[1]], #[[2]]] &,
                 FactorInteger[#]]]], True]} &,
          Range[13000]], #[[2]] &], #[[2]] &]];
    r[m_] := Take[u[[m]], 6];
    w[m_, n_] := r[m][[n]];
    Grid[Table[w[m, n], {m, 1, 6}, {n, 1, 6}]] (* array *)
    Table[w[n - k + 1, k], {n, 6}, {k, n, 1, -1}] // Flatten  (* sequence *)
    (* Peter J. C. Moses, Nov 19 2024 *)