A378193 Rectangular array read by descending antidiagonals: row n shows the integers m such that the number of Pythagorean primes (including multiplicities) that divide m is n-1.
1, 2, 5, 3, 10, 25, 4, 13, 50, 125, 6, 15, 65, 250, 625, 7, 17, 75, 325, 1250, 3125, 8, 20, 85, 375, 1625, 6250, 15625, 9, 26, 100, 425, 1875, 8125, 31250, 78125, 11, 29, 130, 500, 2125, 9375, 40625, 156250, 390625, 12, 30, 145, 650, 2500, 10625, 46875, 203125, 781250, 1953125
Offset: 1
Examples
Corner: 1 2 3 4 6 7 5 10 13 15 17 20 25 50 65 75 85 100 125 250 325 375 425 500 625 1250 1625 1875 2125 2500 3125 6250 8125 9375 10625 12500
Programs
-
Maple
A378193 := proc(n,k) option remember; local a; if k = 0 then 0; else for a from procname(n,k-1)+1 do if A083025(a) = n-1 then return a; end if; end do; end if; end proc: seq(seq( A378193(n,d-n),n=1..d-1),d=2..10) ;
-
Mathematica
u = Map[Map[#[[1]] &, #] &, GatherBy[ SortBy[Map[{#, 1 + Count[Map[IntegerQ[(# - 1)/4] && PrimeQ[#] &, Flatten[Map[ConstantArray[#[[1]], #[[2]]] &, FactorInteger[#]]]], True]} &, Range[13000]], #[[2]] &], #[[2]] &]]; r[m_] := Take[u[[m]], 6]; w[m_, n_] := r[m][[n]]; Grid[Table[w[m, n], {m, 1, 6}, {n, 1, 6}]] (* array *) Table[w[n - k + 1, k], {n, 6}, {k, n, 1, -1}] // Flatten (* sequence *) (* Peter J. C. Moses, Nov 19 2024 *)
Comments