This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378195 #8 Jun 02 2025 15:28:35 %S A378195 1,2,4,6,10,14,20,16,6,0 %N A378195 Number of 2-colorings of length n without an arithmetic progression of length 3. %C A378195 After 0, the sequence will continue to be 0. A sequence satisfying this property cannot have a subsequence which violates it, thus there must exist a sequence of length n-1 if there exists a sequence of length n. %e A378195 a(3) = 6 since we have [0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0]. %t A378195 HasEquallySpacedKBits[bits_, k_] := %t A378195 If[k == 1, True, %t A378195 Module[{n = Length[bits], found = False}, %t A378195 Do[If[Count[Table[bits[[start + gap*i]], {i, 0, k - 1}], %t A378195 bits[[start]]] == k, found = True; Break[]], {gap, 1, %t A378195 Floor[n/(k - 1)]}, {start, 1, n - gap*(k - 1)}]; %t A378195 found]] %t A378195 BitSequence[k_] := %t A378195 Module[{prevSequences = {{}}, currSequences, n = 0, ExtendSequence}, %t A378195 ExtendSequence[seq_] := %t A378195 Module[{newSeq0, newSeq1, result = {}}, newSeq0 = Join[seq, {0}]; %t A378195 newSeq1 = Join[seq, {1}]; %t A378195 If[! HasEquallySpacedKBits[newSeq0, k], AppendTo[result, newSeq0]]; %t A378195 If[! HasEquallySpacedKBits[newSeq1, k], AppendTo[result, newSeq1]]; %t A378195 result]; %t A378195 Function[targetN, %t A378195 Print["k=", k, ", n=", n, ": count=", Length[prevSequences]]; %t A378195 While[n < targetN, n++; %t A378195 currSequences = Flatten[ExtendSequence /@ prevSequences, 1]; %t A378195 prevSequences = currSequences; %t A378195 Print["k=", k, ", n=", n, ": count=", Length[prevSequences]];];]] %t A378195 BitSequence[3][9] %t A378195 (* _Ethan Ji_, Nov 19 2024 *) %Y A378195 First 0 index given by A005346. %Y A378195 Cf. A378196, A378197. %K A378195 nonn %O A378195 0,2 %A A378195 _Ethan Ji_, Nov 19 2024