This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378196 #7 Jun 02 2025 15:28:40 %S A378196 1,2,4,8,14,26,48,78,132,230,356,548,842,1078,1344,1764,1744,1850, %T A378196 1948,1708,1442,1342,1032,702,524,316,168,136,136,144,152,160,168,176, %U A378196 28,0 %N A378196 Number of 2-colorings of length n without an arithmetic progression of length 4. %C A378196 After 0, the sequence will continue to be 0. A sequence satisfying this property cannot have a subsequence which violates it, thus there must exist a sequence of length n-1 if there exists a sequence of length n. %t A378196 HasEquallySpacedKBits[bits_, k_] := %t A378196 If[k == 1, True, %t A378196 Module[{n = Length[bits], found = False}, %t A378196 Do[If[Count[Table[bits[[start + gap*i]], {i, 0, k - 1}], %t A378196 bits[[start]]] == k, found = True; Break[]], {gap, 1, %t A378196 Floor[n/(k - 1)]}, {start, 1, n - gap*(k - 1)}]; %t A378196 found]] %t A378196 BitSequence[k_] := %t A378196 Module[{prevSequences = {{}}, currSequences, n = 0, ExtendSequence}, %t A378196 ExtendSequence[seq_] := %t A378196 Module[{newSeq0, newSeq1, result = {}}, newSeq0 = Join[seq, {0}]; %t A378196 newSeq1 = Join[seq, {1}]; %t A378196 If[! HasEquallySpacedKBits[newSeq0, k], AppendTo[result, newSeq0]]; %t A378196 If[! HasEquallySpacedKBits[newSeq1, k], AppendTo[result, newSeq1]]; %t A378196 result]; %t A378196 Function[targetN, %t A378196 Print["k=", k, ", n=", n, ": count=", Length[prevSequences]]; %t A378196 While[n < targetN, n++; %t A378196 currSequences = Flatten[ExtendSequence /@ prevSequences, 1]; %t A378196 prevSequences = currSequences; %t A378196 Print["k=", k, ", n=", n, ": count=", Length[prevSequences]];];]] %t A378196 BitSequence[4][35] %t A378196 (* _Ethan Ji_, Nov 19 2024 *) %Y A378196 First 0 index given by A005346. %Y A378196 Cf. A378195, A378197. %K A378196 nonn %O A378196 0,2 %A A378196 _Ethan Ji_, Nov 19 2024