This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378197 #14 Nov 23 2024 03:37:17 %S A378197 1,2,4,8,16,30,58,112,216,400,740,1398,2638,4710,8444,15118,27690, %T A378197 48406,84382,146928,255844,402998,625824,956370,1447476,2066828, %U A378197 3225856,5020232,7823236,10975318,15264202,21500308,30004914,39030820,50728472,65402746,88886116 %N A378197 Number of 2-colorings of length n without an arithmetic progression of length 5. %C A378197 After a(178) = 0, the sequence will continue to be 0. A sequence satisfying this property cannot have a subsequence which violates it, thus there must exist a sequence of length n-1 if there exists a sequence of length n. %H A378197 Michael De Vlieger, <a href="/A378197/b378197.txt">Table of n, a(n) for n = 0..178</a> %t A378197 HasEquallySpacedKBits[bits_, k_] := %t A378197 If[k == 1, True, %t A378197 Module[{n = Length[bits], found = False}, %t A378197 Do[If[Count[Table[bits[[start + gap*i]], {i, 0, k - 1}], %t A378197 bits[[start]]] == k, found = True; Break[]], {gap, 1, %t A378197 Floor[n/(k - 1)]}, {start, 1, n - gap*(k - 1)}]; %t A378197 found]] %t A378197 BitSequence[k_] := %t A378197 Module[{prevSequences = {{}}, currSequences, n = 0, ExtendSequence}, %t A378197 ExtendSequence[seq_] := %t A378197 Module[{newSeq0, newSeq1, result = {}}, newSeq0 = Join[seq, {0}]; %t A378197 newSeq1 = Join[seq, {1}]; %t A378197 If[! HasEquallySpacedKBits[newSeq0, k], AppendTo[result, newSeq0]]; %t A378197 If[! HasEquallySpacedKBits[newSeq1, k], AppendTo[result, newSeq1]]; %t A378197 result]; %t A378197 Function[targetN, %t A378197 Print["k=", k, ", n=", n, ": count=", Length[prevSequences]]; %t A378197 While[n < targetN, n++; %t A378197 currSequences = Flatten[ExtendSequence /@ prevSequences, 1]; %t A378197 prevSequences = currSequences; %t A378197 Print["k=", k, ", n=", n, ": count=", Length[prevSequences]]; ]; ]] %t A378197 BitSequence[5][178] %t A378197 (* _Ethan Ji_, Nov 19 2024 *) %Y A378197 First 0 index given by A005346. %Y A378197 Cf. A378195, A378196. %K A378197 nonn %O A378197 0,2 %A A378197 _Ethan Ji_, Nov 19 2024