This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378204 #13 Feb 11 2025 14:40:12 %S A378204 5,5,2,7,7,0,7,9,8,3,9,2,5,6,6,6,4,1,5,1,9,1,5,5,4,5,6,1,1,1,7,8,1,1, %T A378204 1,3,9,8,7,8,4,8,0,9,0,9,3,1,5,5,8,9,3,2,8,4,3,1,1,3,6,9,1,0,1,9,4,1, %U A378204 4,1,0,7,1,0,1,5,0,7,3,0,7,7,8,4,8,0,7,2,3,3 %N A378204 Decimal expansion of the surface area of a triakis tetrahedron with unit shorter edge length. %C A378204 The triakis tetrahedron is the dual polyhedron of the truncated tetrahedron. %H A378204 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriakisTetrahedron.html">Triakis Tetrahedron</a>. %H A378204 Wikipedia, <a href="https://en.wikipedia.org/wiki/Triakis_tetrahedron">Triakis tetrahedron</a>. %H A378204 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>. %F A378204 Equals (5/3)*sqrt(11) = (5/3)*A010468. %e A378204 5.5277079839256664151915545611178111398784809093... %t A378204 First[RealDigits[5*Sqrt[11]/3, 10, 100]] (* or *) %t A378204 First[RealDigits[PolyhedronData["TriakisTetrahedron", "SurfaceArea"], 10, 100]] %Y A378204 Cf. A378205 (volume), A378206 (inradius), A378207 (midradius), A378208 (dihedral angle). %Y A378204 Cf. A377274 (surface area of a truncated tetrahedron with unit edge). %Y A378204 Cf. A010468. %K A378204 nonn,cons,easy %O A378204 1,1 %A A378204 _Paolo Xausa_, Nov 20 2024