This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378205 #11 Feb 11 2025 14:40:41 %S A378205 9,8,2,0,9,2,7,5,1,6,4,7,9,8,2,6,7,2,7,7,8,9,5,0,5,0,2,9,2,3,4,0,1,4, %T A378205 4,3,4,5,1,1,6,1,0,2,4,5,6,7,3,2,5,0,5,0,8,1,7,1,3,8,7,0,6,9,3,8,0,0, %U A378205 8,6,6,5,5,9,8,6,8,5,4,4,3,6,4,6,1,0,2,4,5,4 %N A378205 Decimal expansion of the volume of a triakis tetrahedron with unit shorter edge length. %C A378205 The triakis tetrahedron is the dual polyhedron of the truncated tetrahedron. %H A378205 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriakisTetrahedron.html">Triakis Tetrahedron</a>. %H A378205 Wikipedia, <a href="https://en.wikipedia.org/wiki/Triakis_tetrahedron">Triakis tetrahedron</a>. %H A378205 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>. %F A378205 Equals (25/36)*sqrt(2) = (25/36)*A002193. %e A378205 0.9820927516479826727789505029234014434511610245673... %t A378205 First[RealDigits[25/36*Sqrt[2], 10, 100]] (* or *) %t A378205 First[RealDigits[PolyhedronData["TriakisTetrahedron", "Volume"], 10, 100]] %Y A378205 Cf. A378204 (surface area), A378206 (inradius), A378207 (midradius), A378208 (dihedral angle). %Y A378205 Cf. A377275 (volume of a truncated tetrahedron with unit edge). %Y A378205 Cf. A002193. %K A378205 nonn,cons,easy %O A378205 0,1 %A A378205 _Paolo Xausa_, Nov 20 2024