This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378212 #17 Nov 30 2024 12:57:10 %S A378212 0,0,0,1,0,2,3,4,0,6,5,8,7,10,9,12,0,14,13,16,11,18,17,20,15,22,21,24, %T A378212 19,26,25,28,0,30,29,32,27,34,33,36,23,38,37,40,35,42,41,44,31,46,45, %U A378212 48,43,50,49,52,39,54,53,56,51,58,57,60,0,62,61,64,59,66,65,68,55,70,69,72,67,74,73,76,47,78,77 %N A378212 a(n) is the greatest nonnegative integer k such that there exists a strictly increasing integer sequence k = b_1 < b_2 < ... < b_t = n with the property that b_1 XOR b_2 XOR ... XOR b_t = 0, or 0 if there are no such k (when n is a power of 2). %C A378212 Let's call the sequences mentioned in the definition as "zero-XOR sequences", and their first terms as "starters". a(n) is then the greatest possible starter for any zero-XOR sequence ending with n. a(2^k)'s are set to 0's, because there are no zero-XOR sequences ending with any power of two. That such a sequence exists for any n that is not a power of 2 can be seen from the n-th row of A348296. [This from Peter's PDF-proof at A359506] %C A378212 With 0's removed this is a permutation of natural numbers. %H A378212 Antti Karttunen, <a href="/A378212/b378212.txt">Table of n, a(n) for n = 0..65537</a> %F A378212 For all n >= 0, a(A359506(n)) = n. %e A378212 A table illustrating the first fifteen terms: %e A378212 n |a(n)| sequence %e A378212 ---+----+------------------------------------------------------------- %e A378212 0 | 0 | 0 %e A378212 1 | 0 | As 1 = 2^0, there are no zero-XOR sequences ending with it %e A378212 2 | 0 | (ditto, 2 = 2^1) %e A378212 3 | 1 | 1 XOR 2 XOR 3 %e A378212 4 | 0 | 4 = 2^2 %e A378212 5 | 2 | 2 XOR 3 XOR 4 XOR 5 %e A378212 6 | 3 | 3 XOR 5 XOR 6 %e A378212 7 | 4 | 4 XOR 5 XOR 6 XOR 7 %e A378212 8 | 0 | 8 = 2^3 %e A378212 9 | 6 | 6 XOR 7 XOR 8 XOR 9 %e A378212 10 | 5 | 5 XOR 6 XOR 9 XOR 10 %e A378212 11 | 8 | 8 XOR 9 XOR 10 XOR 11 %e A378212 12 | 7 | 7 XOR 11 XOR 12 %e A378212 13 | 10 | 10 XOR 11 XOR 12 XOR 13 %e A378212 14 | 9 | 9 XOR 10 XOR 13 XOR 14 %e A378212 ---+----+------------------------------------------------------------- %e A378212 Note that there are often other solutions for a zero-XOR sequence ending with n, as for example the terms taken from the n-th row of A348296, followed by n, like for example [2, 8, 10] for 10, [1, 2, 8, 11] for 11, or [2, 4, 8, 14] for 14, but in those cases the starting term is not the greatest possible starter for a sequence ending with n that satisfies the condition. %o A378212 (PARI) %o A378212 up_to = 65537; %o A378212 A359506(n) = if(n==0, return (0), my (x=[n], y); for (m=n+1, oo, if (vecmin(y=[bitxor(v, m) | v<-x])==0, return (m), x=setunion(x, Set(y))))); \\ From A359506. %o A378212 A378212list(up_to_n) = { my(v=vector(up_to_n), k); for(n=1, up_to_n, k=A359506(n); if(k <= up_to_n, if(0==v[k], v[k]=n, print("Not injective! A359506(",v[k],")=A359506("n")="k); return(1/0)))); (v); }; %o A378212 v378212 = A378212list(up_to); %o A378212 A378212(n) = if(!n,n,v378212[n]); %Y A378212 Left inverse of A359506. %Y A378212 Cf. A131577 (positions of 0's), A348296. %K A378212 nonn %O A378212 0,6 %A A378212 _Peter Kagey_ and _Antti Karttunen_, Nov 25 2024