This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378240 #35 Nov 21 2024 12:33:39 %S A378240 1,1,0,1,2,0,1,4,18,0,1,6,40,234,0,1,8,66,540,3570,0,1,10,96,926,8400, %T A378240 59586,0,1,12,130,1400,14706,141876,1053570,0,1,14,168,1970,22720, %U A378240 251622,2528760,19392490,0,1,16,210,2644,32690,394152,4524786,46815116,367677090,0 %N A378240 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*n+3*r+k,n)/(3*n+3*r+k) for k > 0. %F A378240 G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * A_k(x)^(3/k) * (1 + A_k(x)^(3/k)) )^k for k > 0. %F A378240 G.f. of column k: B(x)^k where B(x) is the g.f. of A364167. %F A378240 B(x)^k = B(x)^(k-1) + x * B(x)^(k+2) + x * B(x)^(k+5). So T(n,k) = T(n,k-1) + T(n-1,k+2) + T(n-1,k+5) for n > 0. %e A378240 Square array begins: %e A378240 1, 1, 1, 1, 1, 1, 1, ... %e A378240 0, 2, 4, 6, 8, 10, 12, ... %e A378240 0, 18, 40, 66, 96, 130, 168, ... %e A378240 0, 234, 540, 926, 1400, 1970, 2644, ... %e A378240 0, 3570, 8400, 14706, 22720, 32690, 44880, ... %e A378240 0, 59586, 141876, 251622, 394152, 575402, 801948, ... %e A378240 0, 1053570, 2528760, 4524786, 7156128, 10553970, 14867704, ... %o A378240 (PARI) T(n, k, t=3, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k))); %o A378240 matrix(7, 7, n, k, T(n-1, k-1)) %Y A378240 Columns k=0..1 give A000007, A364167. %Y A378240 Cf. A033877, A071949, A378236, A378237, A378238, A378239. %K A378240 nonn,tabl %O A378240 0,5 %A A378240 _Seiichi Manyama_, Nov 20 2024